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theory of population models in 
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When the model matrix 
varies from year to year…. 

Time-Varying Models: 
… in a known fashion over finite time window

• Recorded sequence of bad and poor years
• Relationship between demographic parameter and env. covariate
• MAIN AIM: model a known trajectory (retrospective)

Random Environment:  
… in a random fashion over a finite or infinite time window

• Projection of relationship between parameter and env. covariate
• Unexplained year-to-year (environmental) variation
• MAIN AIM: projection, asymptotic behavior (prospective)
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(St,pt) 31 parameters

(St,p) 17 parameters

(S,p) 2 parameters

(Srain,p) 3 parameters

2
14 = 7.70, N.S.

2
15 = 37.32, **

2
14 = 18.36, 

N.S.

2
1 = 18.96, 

****

Reducing the number of parameters results in
• Higher precision
• Powerful tests of important biological hypotheses

AIC
1371.49

1349.50

1339.15

1356.10

Survival of storks in Baden-Württemberg estimated 
with rainfall in Sahel as a covariate

Survival of storks in Baden-Württemberg estimated 
with rainfall in Sahel as a covariate
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Model            (St,p) (Srain,p) (S,p)
AIC              1349.50           1339.15                1356.10

log (S / (1- S)) = a + b rain

Storks in Baden-Württemberg: Modelling numbers 
with survival driven by rainfall in Sahel

Year 57          58      … i   i+1      … 74

Rain            x57 x58 …    xi xi+1 ...          x75

Survival 57 58 ...    i i+1 ...          75

Matrix        M57 M58 …   Mi Mi+1 ...          M75

Numbers obtained by a « time-varying matrix model » 
(using N56 based on average stable age structure):

Ni+1=Mi*Ni
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An "ad hoc"
comparison
(o = model)
(x =census)
based on
a3Ni(3)+Ni(4)
(Nr of breeders)

Storks in Baden-Württemberg: Modelling numbers 
with survival driven by rainfall in Sahel

Likelihood based approach to 
time-varying models:

State-space model
Greater snow goose

Observed census

smoothed pop size
(dotted lines: 95 % CI)

Random Environment
the scalar exponential model

(no stage/age classes)

n(t)=At n(t-1) 

At random scalar (i.i.d.) , with E(At)=

E(n(t) / n(t-1) ) =  n(t-1) 

E(n(t) / n(0) )    = t n(0)
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Random environment
Increasing variability

At = 1.15 with probability 1        = 1.15

At = 1.2 and 1.1 with prob. 0.5  = 1.15

At = 1.4 and 0.9 with prob. 0.5  = 1.15

At = 2.0 and 0.3 with prob. 0.5  = 1.15

At = 1.15 with probability 1        = 1.15
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At = 1.2 and 1.1 with prob. 0.5   = 1.15
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At = 1.4 and 0.9 with prob. 0.5   = 1.15
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At = 2.0 and 0.3 with prob. 0.5   = 1.15
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Where is the paradox ?

n(t) = At n(t-1)  n(t) = n(0)  Ai

log n(t) - log n(0)  =  log Ai

Central Limit Theorem:  log Ai  Normal distribution

log n(t)  - log n(0)  Normal ( t , ²t) 

a = E(log At ) , v = var(log At )   t =  a t  ²t = v t
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The paradox is still there 

log n(t) - log n(0)  Normal ( t , ²t) 

 t = a t ,  ²t = v t

 (log n(t) - log n(0) )/t     Normal (a , v/t)

1/t   log n(t)  Normal (a , v/t)

v/t  0 when t 

1/t   log n(t)  log s =  a = E (log At)

However   1/t  log E(n(t))  log  =  log E(At) = Log()

Is the paradox still there ? 

Most probable and expected trajectories differ     

EXPECTED     MOST PROBABLE 

At values           log  log s

1.15            1.15              0.1398     0.1398

1.2    1.1         1.15              0.1398     0.1388

1.4    0.9         1.15              0.1398     0.1156

2.0    0.3         1.15              0.1398              -0.2554

There is no real paradox
n(t)  log-normal distribution  Median < Expectation

At = 1.2 and 1.1 with prob. 0.5 

Distribution for a large t
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There is no real paradox
n(t)  log-normal distribution  Median < Expectation

At = 2.0 and 0.3 with prob. 0.5 

Distribution for a large t

A few trajectories with large growth rate keep 

the expected growth rate equal to log  = log E(At)

Most probable trajectories are concentrated 

around log s = E ( log At ) (more and more when t  )

There is no real paradox

log s is a relevant measure of growth rate

Environmental variability influences
population growth

Environmental variability depresses Population growth

A deterministically growing population may  decrease
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Jensen’s inequality: log s=E(log At )  log  =log E(At)
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The effect of Environmental variability 
on Population growth

How do these results extend to 

age or (stage-) classified populations ? 

The Barn Swallow example

1st y                n1(t-1)                                                       n1(t)         

After 1st y      n2(t-1)                                                       n2(t)

s0

s1    

s2

f2

f1

f1s0 f2s0

A =         
s1 s2

Average values
s0= 0.2   f1, f2 =3/2, 6/2 
s1=0.5     s2= 0.65

+ random Survival with variance ²

E(log N(t)), Constant Environment
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log s= 0.0488

log = 0.0488

22

23

24



5/1/2022

9

E(log N(t)), Random Environment
=0.02
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log s= 0.0581

log = 0.0488
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log s= 0.0745

log = 0.0488

E(log N(t)), Random Environment
=0.05
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log s= 0.0628

log = 0.0488

E(log N(t)), Random Environment
=0.10
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log s= 0.0628

log = 0.0488

E(log N(t)), Random Environment
=0.10

Same depression of growth as in the scalar case?
(most likely trajectories tend to be below average trajectory) 

Phase plane, Constant Environment
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Phase plane 
=0.02
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Same depression as above …plus a constant 
mismatch in age structure

log s  log( (E(At)) ) = log 

log s  E( log(At) ), At being a matrix

log s  log E ( (At) ), nt  eigenvector of At

Convergence of 1/t log c’ n(t) to log s

even under correlated environments
(“Ergodic theorems on products of random matrices”)

How to calculate the asymptotic growth rate ?

Simulation or Approximation

“The computation is considerably more involved 

than in the scalar case” 

S.Tuljapurkar (1990)
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Estimation of log s
Simulation and approximation

 Simulation: R, Matlab, ULM... 
Large number of repetitions needed

• Approximation : valid from small variability
For uncorrelated parameters:

1           2 
log s  log  - ____  ___     var()

2 ²       

APPROXIMATE
  log  log s

0.00                  1.05       0.0488     0.0488

0.01                  1.05       0.0488             0.0486

0.05                  1.05       0. 0488     0.0442

0.10                  1.05       0.0488     0.0304

Estimation of log s
Approximation
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