

1

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
2

When the model matrix varies from year to year....

Time-Varying Models:

in a known fashion over finite time window

- Recorded sequence of bad and poor years
- Relationship between demographic parameter and env. covariate
- MAIN AIM: model a known trajectory (retrospective)

Random Environment:

. in a random fashion over a finite or infinite time window

- Projection of relationship between parameter and env. covariate - Unexplained year-to-year (environmental) variation
- MAIN AIM: projection, asymptotic behavior (prospective)

Survival of storks in Baden-Württemberg estimated with rainfall in Sahel as a covariate

AIC

$\left(S_{t}, p_{t}\right)$		31 parameters	1371.49
($S_{\text {t }}, \mathrm{p}$)	$x^{2} 114=18.36$,N.S.	17 parameters	1349.50
$\left({ }_{\text {rain }}\right.$ p)		3 parameters	1339.15
(S, p)	$\underset{\substack{x_{1}^{2}=18.96, * * * *}}{\substack{\text { a }}}$	2 parameters	1356.10

Reducing the number of parameters results in

- Higher precision
- Powerful tests of important biological hypotheses

4
with rainfall in Sahel as a covariate

Model	$\left(\mathrm{S}_{\text {t }} \mathrm{p}\right)$	$\left(\mathrm{S}_{\text {rain }}, \mathrm{p}\right)$	(S, p)	
AIC	1349.50	1339.15	1356.10	
	$\log (\mathrm{~S} /(1-\mathrm{S}))=\mathrm{a}+\mathrm{b}$ rain			

\qquad
\qquad
\qquad
\qquad
\qquad

5

\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
7

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
8

10

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
11

12

$A_{t}=1.4$ and 0.9 with prob. $0.5 \Rightarrow \lambda=1.15$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
13

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
14

Where is the paradox ?

$n(t)=A_{t} n(t-1) \Rightarrow n(t)=n(0) \Pi A_{i}$
$\log n(t)-\log n(0)=\Sigma \log A_{i}$

Central Limit Theorem: $\Sigma \log \mathrm{A}_{\mathrm{i}} \approx$ Normal distribution
$\log \mathrm{n}(\mathrm{t})-\log \mathrm{n}(0) \approx \operatorname{Normal}\left(\mu_{\mathrm{t}}, \sigma_{\mathrm{t}}^{2}\right)$
$a=E\left(\log A_{t}\right), v=\operatorname{var}\left(\log A_{t}\right) \Rightarrow \mu_{t}=a t \quad \sigma_{t}^{2}=v t$

15

The paradox is still there

```
log n(t)-\operatorname{log}n(0)\approxNormal ( }\mp@subsup{\mu}{t}{},\mp@subsup{\sigma}{t}{2}
    \mu
# (log n(t)- log n(0) )/t 
        1/t logn(t) }\approxN\operatorname{Normal}(\textrm{a},\textrm{v}/\textrm{t}
v/t }->0\mathrm{ when t }->\infty
```



```
However 1/t log E(n(t)) -> log}\lambda=\operatorname{log}E(\mp@subsup{A}{t}{})=\operatorname{Log}(\lambda
```

16

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
17

There is no real paradox

$\mathrm{n}(\mathrm{t}) \rightarrow$ log-normal distribution \Rightarrow Median < Expectation

$$
A_{t}=2.0 \text { and } 0.3 \text { with prob. } 0.5
$$

Distribution for a large t

19

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
20

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

21

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
22

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

+ random Survival with variance σ^{2}

23

\qquad
25

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
26

27

28

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
29

30

\qquad
\qquad
\qquad

31

Same depression as above ...plus a constant \qquad mismatch in age structure
$\log \lambda_{s} \neq \log \left(\lambda\left(E\left(A_{t}\right)\right)\right)=\log \lambda$
$\log \lambda_{s} \neq E\left(\log \left(A_{t}\right)\right), A_{t}$ being a matrix \qquad
$\log \lambda_{s} \neq \log E\left(\lambda\left(A_{t}\right)\right), n_{t} \neq$ eigenvector of A_{t}
Convergence of $1 / t \log c^{\prime} n(t)$ to $\log \lambda_{s}$
\qquad
even under correlated environments
("Ergodic theorems on products of random matrices") \qquad
\qquad
\qquad
32

Estimation of $\log \lambda_{s}$ Simulation and approximation

- Simulation: R, Matlab, ULM...

Large number of repetitions needed

- Approximation : valid from small variability For uncorrelated parameters:

$$
\log \lambda_{\mathrm{s}} \approx \log \lambda-\frac{1}{2 \lambda^{2}} \Sigma\left(\frac{\partial \lambda}{\partial \theta}\right)^{2} \operatorname{var}(\theta)
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
35

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

