

Time-Varying and Random Environment Matrix Models

Shripad TULJAPURKAR ("Tulja") who extensively developed the theory of population models in random environment

2

1

When the model matrix varies from year to year....

Time-Varying Models:

- ... in a known fashion over finite time window
- Recorded sequence of bad and poor years
- Relationship between demographic parameter and env. covariate
- MAIN AIM: model a known trajectory (retrospective)

Random Environment:

- ... in a random fashion over a finite or infinite time window
- Projection of relationship between parameter and env. covariate
- Unexplained year-to-year (environmental) variation
- MAIN AIM: projection, asymptotic behavior (prospective)

Survival of storks in Baden-Württemberg estimated with rainfall in Sahel as a covariate 0.9 8.0 survival Estimated : 0.4 0.3 1957 1959 1961 1963 1965 1967 1969 1971 Model (S_{rain}, p) (S_t,p) (S,p) AIC 1349.50 1339.15 1356.10 $\log (S / (1 - S)) = a + b rain$

							ling number n Sahel
Year	57	58		i	i+1		74
Rain	x ₅₇	x ₅₈		x _i	x _{i+1}		x ₇₅
Rain Survival Matrix	ф ₅₇	ф ₅₈		φi	φ _{i+1}		ф ₇₅
Matrix	M ₅₇	M ₅₈		Mi	M _{i+1}		M ₇₅
	s obtaine ₅₆ based	ed by a	« ti age	me-v	arying	matri	x model »

Likelihood based approach to time-varying models: State-space model Greater snow goose

Random Environment the scalar exponential model (no stage/age classes)

$$\begin{split} n(t) = &A_t \; n(t\text{-}1) \\ A_t \; \text{random scalar (i.i.d.) , with } E(A_t) = &\lambda \\ E(n(t) \; / \; n(t\text{-}1) \;) = &\lambda \; n(t\text{-}1) \\ E(n(t) \; / \; n(0) \;) \; = \; &\lambda^t \; n(0) \end{split}$$

1		EXPECTED	MOST PROBABL
A _t values	λ	log λ	$\log \lambda_s$
1.15	1.15	0.1398	0.1398
1.2 1.1	1.15	0.1398	0.1388
1.4 0.9	1.15	0.1398	0.1156
2.0 0.3	1.15	0.1398	-0.2554

There is no real paradox A few trajectories with large growth rate keep the expected growth rate equal to $\log \lambda = \log E(A_t)$ Most probable trajectories are concentrated around $\log \lambda_s = E (\log A_t)$ (more and more when $t \rightarrow \infty$)

20

E(log N(t)), Random Environment σ =0.05

7		E	Estimation of log λ_s Approximation					
1				APPROXIMATE				
	σ	λ	$\log \lambda$	$\log \lambda_s$				
	0.00	1.05	0.0488	0.0488				
	0.01	1.05	0.0488	0.0486				
	0.05	1.05	0. 0488	0.0442				
	0.10	1.05	0.0488	0.0304				

