

Hal CASWELL, showing a matrix model to a Laysan Albatross on Midway atoll (Hawaï). Hal's book (Matrix models, Sinauer, 2001) can be used both as a textbook and as a comprehensive reference.

Transposition and matrix product

• While $U'V = \left(v_1 u_1 + v_2 u_2\right)$ is a 1 x 1 matrix, i.e. a scalar, also denoted as $\Sigma u_i v_i$

7

Hence

From numerical to formal results

Hence, $M^t \rightarrow \lambda^t \left[u_1 V \ u_2 V \right] = \lambda^t V U'$ Or, equivalently and more rigorously $\lambda^{-t} M^t \rightarrow V U'$

 $u_i > 0, v_i > 0$

 $\lambda^{-(t+1)} M^{t+1} = \lambda^{-1} M \lambda^{-t} M^t \rightarrow \lambda^{-1} M \vee U' = \vee U'$

= $\lambda^{-t} M^t \lambda^{-1} M \rightarrow V U' \lambda^{-1} M$

 $V U' \lambda^{-1}M = V U'$ Premutiply by U' and simplify by scalar U'V, to get:

 $U'M = \lambda U'$

8

...From formal to numerical results

In our numerical example: 0.3478 0.5217 0.4348 0.4522

• One may choose U'= (0.3478 0.5217), then V =

then U' = (1.000 1.5000)

· or any other coherent choice.

In all cases U'V = $\Sigma u_i v_i = 1$

