Matrix Population Models for Wildlife Conservation and Management

2-6 May 2022

Jean-Dominique LEBRETON, Jim HINES,

Xavier LAMBIN, Chris SUTHERLAND, Madan OLI

1

Matrix model formulation

Patrick "George" LESLIE, whose famous 1945 paper launched the development of « matrix models »

2

Matrix model formulation

- Two simple examples
- Some numerical results
- A first look at different generalizations

A simple example

Discrete time vs Continuous time Two different points of view

Discrete time: $N(t+1) = (s_0f + s_1) N(t) = \lambda N(t)$

Uses only overall seasonal survival probabilities and fecundity

Continuous time: $N(t+1) = \exp(r) N(t)$

- Based on constant r throughout (within as well as among years)
- Or, in presence of within year (seasonal) variation in demography, requires to integrate changes induced by variation in instantaneous rates to produce overall annual r

However, within year changes in, e.g., survival, most often inaccessible ... and not needed in discrete time models

7

A simple example Density Dependence

Density independent model

 $\lambda = 0.45 + 0.2 * 3 = 0.45 + 0.6 = 1.05$

Density Dependent model

Assume fecundity decreases with population size as $3 * \exp(-0.001*N(t))$ then

 $\lambda = 0.45 + 0.6 * exp(-0.001*N(t))$

8

A simple example Density Dependence

Density Dependent model

 $\lambda = 0.45 + 0.6 * exp(-0.001*N(t))$

- λ is a monotonously decreasing function of N
- Equals 1 iff $\exp(-0.001*N(t) = (1-0.45)/0.6 = 11/12$
- i.e. when N = -1000 * Ln(11/12) = 87.0114

Another simple example

- Regular (asymptotic) behaviour
- Partially dependent on initial conditions
- Encourages formal analysis (next lecture)
- A key assumption: constant parameters

26

Model as a tool: use it to answer questions

- Growth ?
- Structure ?
- Change in parameters ?
- Sustainability of human induced action ?
- Effect of evolutionary change ?
- ...

Model as a tool: suggested modeling process

- Biological Questions
- Review Information available
- Build model
- Translate biological Q. into technical Q.
- Proceed to parameter estimation (CMR)
- Use model to answer Biological Questions

28

29

Matrix Models:
a variety of structures

 Age classes and time scale
 Stages
 Sites
 Sexes
 Sexes
 Age x Sites

Matrix Models: a variety of generalizations				
Feature	Recurrence equation	Type of model	Math tools	Key reference
Constant parameters	$N_{t+1} = MN_t$	Matrix models stricto sensu	Linear Algebra	Caswell (2001) Matrix population models
Density- dependence	$N_{t+1} = M(N_t)N_t$	Density- dependent matrix models, Discrete time logistic growth	Nonlinear dynamics	Caswell (2001) Matrix population models
Random Environment	$N_{t+1} = \mathbf{M}_{\!t} N_t$	Random Environment models	Products of random matrices	Tuljapurkar (1990) Population dynamics in variable environments
Demographic stochasticity	$E(N_{t+1}/N_t) = MN_t$	Branching Processes	Applied Probability	Gosselin, Lebreton (2001) The potential of branchin processes in Ferson & Burgman (Eds

Matrix Models: Density-dependence

- Regular (asymptotic) behaviour too
- Formal analysis feasible too
- Transcribes "Logistic growth" in a realistic (demographic) context

41

Matrix Models: Overview

- Easily built from life cycle
- Easily generalized to consider relevant sources of variation in demographic parameters
- Easily generalized to any partition of individuals in mutually exclusive « classes » (« stages », « states »)
- Discrete seasons, matrix products, pre/post birth-pulse
- Parameter estimation often drives choice of generalization (e.g. random environment)
- Amenable to formal study (not only asymptotics!)

