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Matrix model formulation

Patrick "George" LESLIE,
whose famous 1945 paper
launched the development
of « matrix models »

Matrix model formulation

e Two simple examples
e Some numerical results
o Afirst look at different generalizations




A simple example

QUANTITATIVE LIFE CYCLE
in a house sparrow Passer domesticus
population

newborn
f/ \SU
aged >=1 S1 _ aged>=1

»

One linear scalar equation  N(t+1) = (s,f +s;) N(t)

A simple example

QUANTITATIVE LIFE CYCLE
in a house sparrow population

One linear scalar equation  N(t+1) = (s,f +s;) N(t)
50=0.2,f=6/2,5,=0.45 = s5,f +5, =1.05
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A simple example

Discrete time vs Continuous time

Discrete time: N(t+1) = (sf +5;) N(t) = A N(t)

Continuous time: N’(t) =r N(t) =
N(t) = N(0) exp(rt)
N(t+1) = N(0) exp(r(t+1)) = N(0) exp(rt+r) = N(0) exp(rt)exp(r)

Hence N(t+1) = exp(r) N(t)
exp(r)= A
or, equivalently r =Ln(A)
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A simple example

Discrete time vs Continuous time
Two different points of view

Discrete time: N(t+1) = (s + ;) N(t) = A N(t)
* Uses only overall seasonal survival probabilities and fecundity

Continuous time:  N(t+1) = exp(r) N(t)

* Based on constant r throughout (within as well as among years)

* Or, in presence of within year (seasonal) variation in
demography, requires to integrate changes induced by variation
in instantaneous rates to produce overall annual r

However, within year changes in, e.g., survival, most often
inaccessible ... and not needed in discrete time models

A simple example
Density Dependence

Density independent model
A =0.45+0.2 * 3 =0.45+0.6 = 1.05

Density Dependent model

Assume fecundity decreases with population size
as 3 *exp(-0.001*N(t))

then

A =0.45+ 0.6 * exp(-0.001*N(t))

A simple example
Density Dependence

Density Dependent model
A =0.45+ 0.6 * exp(-0.001*N(t))

* ) isamonotonously decreasing function of N
« Equals 1 iff exp(-0.001*N(t) = (1-0.45)/0.6 = 11/12
* i.e.when N=-1000 * Ln(11/12) = 87.0114
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A simple example
Density Dependence

A =0.45+0.6 = 1.05

.
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A =0.45+ 0.6 * exp(-0.001*N(t)) —
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A simple example
Density Dependence

A =0.45+0.6 = 1.05
A =0.45+ 0.6 * exp(-0.001*N(t)) ——

87.0114 & /}/—
One of the (many)
a0
discrete time logistic
»r growth equations
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Year t

females
aged 1

females
aged >1

Another simple example

1) SURVIVAL in a barn swallow
Hirundo rustica population

Year t+1

females

Sy aged 1
S, females
aged >1
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Another simple example

2) REPRODUCTION in a barn swallow
Hirundo rustica population

Year t Year t+1
newborn
f, So
females \ females
aged 1 aged 1
fZ
females females
aged >1 aged >1
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Another simple example

OVERALL LIFE CYCLE in a barn swallow
Hirundo rustica population

Year t Year t+1
newborn
f So
females 2 \ females
aged 1 aged 1
g f 3 g
females females
aged >1 aged >1
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A simple example

LIFE CYCLE graph in a
barn swallow population

f150

Females 21 Females ;
aged 1 > aged >1 2

M B

f25
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Another simple example

QUANTITATIVE LIFE CYCLE
in a barn swallow population

Year t Year t+1
Ny Ny
N, N,
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Another simple example

QUANTITATIVE LIFE CYCLE
in a barn swallow population

Ny (t+1)= sofy Ny (t) + 50, Na(t)

N,(t+1) =s; Ny(t) + s, Ny(t)

17

A Mathematical Model

e i.e., a mathematical object (linear equations)...
* based on assumptions
(discrete time scale, life cycle, constant parameters)
e potentially useful (numerical & formal calculations)
e to answer biological questions (is the pop. growing ?)
e easily generalizable
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Another simple example

PARAMETER ESTIMATES
in a barn swallow population

so=0.20 f,;=3/2 f,=6/2
(50 % breed at age 1, 6 young produced,
divide by 2 for balanced sex-ratio)

5,=0.50 s,=0.65
(analysis of dead recoveries)
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A simple example

QUANTITATIVE LIFE CYCLE
in a barn swallow population

Two linear N, (t+1) = 0.30 N,(t) + 0.60 N,(t)
Equations N,(t+1) = 0.50 N4(t) + 0.65 N,(t)
One matrix N, | _ 0.30 0.60 N,
Equation N, |41 0.50 0.65 N, (¢

N ... =MN, alike a product of scalars
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Some Numerical Results

QUANTITATIVE LIFE CYCLE
in a barn swallow population

Two linear  Ny(t+1) = 0.30 N4(t) + 0.60 N,(t)
Equations  N,(t+1) = 0.50 N,(t) + 0.65 N,(t)

0 6 5.7 6.05

10 6.5 7.7 7.55
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Trajectory over time
Asymptotically exponential growth
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Trajectory in the phase plane

Asymptotically stable age structure
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Trajectory over time

two different initial vectors

24
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Trajectory in the phase plane
two different initial vectors
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Another simple example

« Regular (asymptotic) behaviour
« Partially dependent on initial conditions
« Encourages formal analysis (next lecture)

« A key assumption: constant parameters
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Model as a tool:
use it to answer questions

® Growth ?

e Structure ?

¢ Change in parameters ?

e Sustainability of human induced action ?

o Effect of evolutionary change ?

27
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Model as a tool:
suggested modeling process

* Biological Questions

¢ Review Information available

® Build model

e Translate biological Q. into technical Q.

* Proceed to parameter estimation (CMR)

e Use model to answer Biological Questions
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Matrix Models:
the basic Leslie age-structured model

Pre birth-pulse matrix:
fecundities x 1t year survival = "net fecundities"

Aging + survival:
survival probabilities
on 15t sub-diagonal

note shift in
survival indices
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Matrix Models:
a first variation

Pre birth-pulse matrix:
fecundities x 1t year survival = "net fecundities"

f(151

Aging + survival:
0 survival probabilities
on 15t sub-diagonal

S "n+" age class <=
infinite matrix

30
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Matrix Models:
a variety of structures

o Age classes and time scale
o Stages

o Sites

® Sexes

¢ Seasonal models

* Age x Sites ....
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Matrix Models:
seasonal models

Spring t Summer Spring t+1

Nft)
N, (1) f N, (0) S: Ny(t+1)
N, () N, (t) Ny(t+1)
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Matrix Models:
seasonal models

Spring t Summer Spring t+1
N(t) N’(t) N(t+1)
M, M,
f, f, S50 0
M=110 M,=
01 0 s

33

5/1/2022

11



Matrix Models:
seasonal models

it s 00

1
01 0 s;s,

M,M; = [ 2x3 matrix] x [3 x 2 matrix ]
is a 2 x 2 matrix

Soft  Sof
M,M, =

S1 S

... the 2 x 2 original matrix
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Matrix Models:
post birth-pulse model

Spring t Summer Spring t+1
N(t) N’(t) N(t+1)
M, M,
fiso 51 fas,

M;M,=| s 0 O
0 s s

N’(t+1) = M, M, N'(t)
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Matrix Models:
a variety of generalizations

Feature Recurrence equation Type of model Math tools | Key reference
Constant Matrix models Linear Caswell (2001) Matrix
parameters — stricto sensu Algebra population models
N, =MN,
Density- Density- Nonlinear |Caswell (2001) Matrix
dependence dependent matrix |dynamics |population models
N = M(N )N models, Discrete
t+ t . The
time logistic
growth
Random Random Products | Tuljapurkar (1990)
Environment N — M N Environment of random | Population dynamics in
t+1 t models matrices |variable environments
Demographic Branching Applied Gosselin, Lebreton (2001)
stochasticity E(NH] /Nl) = Mlv( Processes Probability | The potential of branching
processes...
in Ferson & Burgman (Eds)
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Matrix Models:
Density-dependence

5/1/2022

So(Ny(t) + N(t)) [ x [f; Ny(t) + f, Ny(t) ]

N, (t+1)

N, (t+1) sy Ny(t) + s, Ny(t)

e.g. So(N;(t) + N,(t)) = 0.2 * exp(-0.001 (N,(t) + N,(t)) )
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Matrix Models:
Density-dependence

So(N4(t) + N,(t)) = 0.2 * exp(-0.001 (N,(t) + N,(t)) )
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Trajectory over time
Asymptotic stabilization
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Trajectory in the phase plane
Asymptotically stable age structure

N(1)
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Matrix Models:
Density-dependence

® Regular (asymptotic) behaviour too
® Formal analysis feasible too
e Transcribes "Logistic growth"

in a realistic (demographic) context
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Matrix Models:
Overview

e Easily built from life cycle

o Easily generalized to consider relevant sources of
variation in demographic parameters

e Easily generalized to any partition of individuals in
mutually exclusive « classes » (« stages », « states »)

« Discrete seasons, matrix products, pre/post birth-pulse

* Parameter estimation often drives choice of
generalization (e.g. random environment)

¢ Amenable to formal study (not only asymptotics!)
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