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Matrix model formulation

Patrick "George" LESLIE,
whose famous 1945 paper
launched the development 
of « matrix models »

Matrix model formulation

• Two simple examples 
• Some numerical results
• A first look at different generalizations

1

2

3



5/1/2022

2

One linear scalar equation N(t+1) = (s0f + s1) N(t) 

A simple example

QUANTITATIVE LIFE CYCLE
in a house sparrow Passer domesticus
population

s0f
newborn

aged >=1                                                           aged >=1s1

One linear scalar equation N(t+1) = (s0f + s1) N(t)
s0 = 0.2, f = 6/2, s1 = 0.45  s0f + s1 = 1.05

A simple example

QUANTITATIVE LIFE CYCLE
in a house sparrow population

Log scale !

Discrete time:              N(t+1) = (s0f + s1) N(t) =  N(t)

Continuous time:  N’(t)  = r N(t)   
N(t)      = N(0) exp(rt)
N(t+1)  = N(0) exp(r(t+1)) = N(0) exp(rt+r) = N(0) exp(rt)exp(r)

Hence N(t+1) = exp(r) N(t)
exp(r) =     

or, equivalently r     = Ln()

A simple example

Discrete time vs Continuous time
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Discrete time:              N(t+1) = (s0f + s1) N(t) =  N(t)
• Uses only overall seasonal survival probabilities and fecundity

Continuous time:        N(t+1) = exp(r) N(t)
• Based on constant r throughout (within as well as among years)
• Or, in presence of within year (seasonal) variation in 

demography, requires to integrate changes induced by variation 
in instantaneous rates to produce overall annual r  
However, within year changes in, e.g., survival, most often

inaccessible … and not needed in discrete time models

A simple example

Discrete time vs Continuous time
Two different  points of view

Density independent model

 = 0.45+0.2 * 3 = 0.45+0.6 = 1.05

Density Dependent model
Assume fecundity decreases with population size 
as  3 *exp(-0.001*N(t))
then

 = 0.45+ 0.6 * exp(-0.001*N(t))

A simple example
Density Dependence

Density Dependent model
 = 0.45+ 0.6 * exp(-0.001*N(t))

•  is a monotonously decreasing function of N
• Equals 1 iff exp(-0.001*N(t) = (1-0.45)/0.6 = 11/12
• i.e. when N = -1000 * Ln(11/12) = 87.0114

A simple example
Density Dependence
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 = 0.45+0.6 = 1.05        
 = 0.45+ 0.6 * exp(-0.001*N(t))

A simple example
Density Dependence

87.0114

 = 0.45+0.6 = 1.05        
 = 0.45+ 0.6 * exp(-0.001*N(t))

A simple example
Density Dependence

87.0114

One of the (many)  
discrete time logistic
growth equations

Another simple example

1) SURVIVAL in a barn swallow
Hirundo rustica population

Year t                                                             Year t+1

females                                                          females 
aged 1                                                             aged 1

females                                                           females 
aged >1                                                           aged >1

s1

s2
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Year t                                                             Year t+1

females                                                          females 
aged 1                                                             aged 1

females                                                           females 
aged >1                                                           aged >1

2) REPRODUCTION in a barn swallow
Hirundo rustica population

s0f1

f2

newborn

Another simple example

Year t                                                             Year t+1

females                                                          females 
aged 1                                                             aged 1

females                                                           females 
aged >1                                                           aged >1

OVERALL LIFE CYCLE in a barn swallow
Hirundo rustica population

s1

s2

s0f1

f2

newborn

Another simple example

Females
aged 1

Females
aged >1

f2s0

f1s0

s1
s2

LIFE CYCLE graph in a
barn swallow population

A simple example
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QUANTITATIVE LIFE CYCLE
in a barn swallow population

Year t                                                              Year t+1

N1 N1

N2                                                                                                          N2

s1

s2

s0f1

f2

newborn

Another simple example

N1(t+1)= s0f1 N1(t) + s0f2 N2(t)

N2(t+1) = s1 N1(t)  +  s2 N2(t) 

QUANTITATIVE LIFE CYCLE
in a barn swallow population

Another simple example

A Mathematical Model

• i.e., a mathematical object (linear equations)…
• based on assumptions 

(discrete time scale, life cycle, constant parameters) 
• potentially useful (numerical  & formal calculations)
• to answer biological questions (is the pop. growing ?)
• easily generalizable
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PARAMETER ESTIMATES
in a barn swallow population

s0= 0.20  f1=3/2    f2 =6/2
(50 % breed at age 1, 6 young produced,
divide by 2 for balanced sex-ratio) 

s1 = 0.50    s2 = 0.65 
(analysis of dead recoveries)

Another simple example

Two linear N1(t+1) = 0.30 N1(t) + 0.60 N2(t)
Equations                     N2(t+1) = 0.50 N1(t) + 0.65 N2(t)

One matrix        N1 = 0.30  0.60        N1
Equation             N2   t+1 0.50 0.65         N2    t

N t+1 = M N t , alike a product of scalars

QUANTITATIVE LIFE CYCLE
in a barn swallow population

A simple example

t =                0           1              2             3       ...

0           6            5.7          6.05     ...
N =     

10           6.5         7.7          7.55      ...

Some Numerical Results

QUANTITATIVE LIFE CYCLE
in a barn swallow population

Two linear N1(t+1) = 0.30 N1(t) + 0.60 N2(t)
Equations      N2(t+1) = 0.50 N1(t) + 0.65 N2(t) 
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Trajectory over time
Asymptotically exponential growth

Log scale !

Trajectory in the phase plane
Asymptotically stable age structure

N1

N2

Trajectory over time 
two different initial vectors

0
10

10
0

Log scale !
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Trajectory in the phase plane
two different initial vectors

0
10

10
0

N1

N2

• Regular (asymptotic) behaviour

• Partially dependent on initial conditions

• Encourages formal analysis (next lecture)

• A key assumption: constant parameters

Another simple example

• Growth ?

• Structure ?

• Change in parameters ?

• Sustainability of human induced action ?

• Effect of evolutionary change ?

• ...

Model as a tool: 
use it to answer questions
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Model as a tool: 
suggested modeling process

• Biological Questions

• Review Information available

• Build model

• Translate biological Q. into technical Q.

• Proceed to parameter estimation (CMR)

• Use model to answer Biological Questions

Matrix Models: 
the basic Leslie age-structured model

f1s1 f2s1 …   fis1 …      fns1
s2 0      …     0         …        0
0    s3 …     0         …        0

M  =       …   …     …     …        …        …
0    …     …    si+1 …        …
…   …     …     …         …        …
0    0     …     …          sn 0

Pre birth-pulse matrix: 
fecundities x 1st year survival = "net fecundities"

Aging + survival: 
survival probabilities
on 1st sub-diagonal

note shift in 
survival indices

Matrix Models: 
a first variation

f1s1 f2s1 …   fis1 …      fns1
s2 0      …     0         …        0
0    s3 …     0         …        0

M  =       …   …     …     …        …        …
0    …     …    si+1 …        …
…   …     …     …         …        …
0    0     …     …          sn sn+1

Pre birth-pulse matrix: 
fecundities x 1st year survival = "net fecundities"

"n+" age class 
infinite matrix

Aging + survival: 
survival probabilities
on 1st sub-diagonal
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• Age classes and time scale

• Stages

• Sites

• Sexes

• Seasonal models

• Age x Sites ….

Matrix Models: 
a variety of structures

Matrix Models: 
seasonal models

Spring t                Summer                Spring t+1

N’0(t)

N1(t)                         N’1(t)                    N1(t+1) 

N2(t)                         N’2(t)                    N2(t+1) 

Spring t               Summer           Spring t+1

N(t)                        N’(t)                      N(t+1) 

M1 M2

Matrix Models: 
seasonal models

f1 f2
M1=     1  0

0  1 

s0 0   0
M2=  

0 s1 s2
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s0f1 s0f2
M2M1  =

s1 s2

…  the 2 x 2 original matrix

Matrix Models: 
seasonal models

f1 f2
M1=     1  0

0  1 

s0 0   0
M2=  

0  s1 s2

M2M1   = [ 2x3 matrix] x [3 x 2 matrix ]
is a 2 x 2 matrix

Spring t               Summer           Spring t+1

N(t)                        N’(t)                      N(t+1) 

M1 M2

Matrix Models: 
post birth-pulse model

N’(t+1) = M1 M2 N’(t)
f1s0 f2s1 f2s2

M1 M2 =       s0 0       0
0       s1 s2

Feature Recurrence equation Type of model Math tools Key reference

Constant
parameters

Matrix models 
stricto sensu

Linear
Algebra

Caswell (2001) Matrix 
population models

Density-
dependence

Density-
dependent matrix 
models, Discrete 
time logistic 
growth

Nonlinear
dynamics

Caswell (2001) Matrix 
population models

Random
Environment

Random 
Environment 
models

Products 
of random 
matrices

Tuljapurkar (1990) 
Population dynamics in 
variable environments

Demographic
stochasticity

Branching 
Processes

Applied
Probability

Gosselin, Lebreton (2001) 
The potential of branching 
processes...
in Ferson & Burgman (Eds)

ttt NNMN )(1 

ttt NN M1

ttt MNNNE  )/( 1

tt MNN 1

Matrix Models: 
a variety of generalizations
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N1(t+1)   =    s0(N1(t) + N2(t)) x [ f1 N1(t)  +  f2 N2(t) ]

N2(t+1)   =    s1 N1(t)   +  s2 N2(t) 

e.g. s0(N1(t) + N2(t)) = 0.2 * exp(-0.001 (N1(t) + N2(t)) )

Matrix Models: 
Density-dependence 

s0(N1(t) + N2(t)) = 0.2 * exp(-0.001 (N1(t) + N2(t)) )

Matrix Models: 
Density-dependence 

Trajectory over time
Asymptotic stabilization
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Trajectory in the phase plane
Asymptotically stable age structure

• Regular  (asymptotic) behaviour too

• Formal analysis feasible too

• Transcribes "Logistic growth" 

in a realistic (demographic) context 

Matrix Models: 
Density-dependence 

• Easily built from life cycle

• Easily generalized to consider relevant sources of
variation in demographic parameters

• Easily generalized to any partition of individuals in
mutually exclusive « classes » (« stages », « states »)

• Discrete seasons, matrix products, pre/post birth-pulse

• Parameter estimation often drives choice of 
generalization (e.g. random environment) 

• Amenable to formal study (not only asymptotics!) 

Matrix Models: 
Overview 
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