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Introduction to Population 
Ecology & Modeling

What is a population?
• Population:

– a group of organisms (plants, animals, or 
microorganisms) of the same species
coexisting at the same time and place.

• Population ecology:
– the scientific study of the dynamics, 

regulation, persistence and evolution of 
biological populations.
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• Empirical (field/lab) study
– Data and statistical analyses

– Population parameters/characteristics

• Population models
– Empirical and theoretical models

How do we study populations?

• Abundance

• Rate of birth (birth rate)

• Rate of death (death rate)

• Emigration/immigration rate

• Rate of increase (population growth rate)

• Sex ratio

• Age or stage structure

• Other: spatial distribution, …

Population characteristics/ 
parameters

Population models

• Needed for understanding things like
– Future dynamics

– Persistence and viability

– Scenario planning

– …

• Typically, population characteristics are used as
model parameters
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Exponential model
(deterministic)

Stochastic exponential
model

Add stochasticity

Structured (LT/matrix/IPM) 
model

Add age/stage structure

DD matrix model

Add DD

Stochastic matrix 
model

Add stochasticity

DD, stochastic matrix 
model

Add DD and stochasticity

“Base model”

Logistic model

Add DD

Add stochasticity

Stochastic logistic
model

Taxonomy of population models

Population growth
Exponential growth models

Population growth
• Processes by which individuals are 

added to a population:
1. Birth (B)

2. Immigration (I)

• Processes by which individuals are 
removed from a population

1. Death (D)

2. Emigration (E)

• Using these parameters, N1 is:
N1 = N0 + B + I - D - E.

BIDE model
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Assumptions
1. Unlimited, homogeneous, and constant environment

2. No immigration or emigration: closed population  

(geographic closure)

3. Constant birth and death rates (= constant growth 

rate) 

• No density-dependence or stochasticity

4. No age/stage (or spatial) structure

Discrete exponential growth 
model 

01

0 0 0 0 00

1 .
N B D B D

N N N N

N

NN
     

BIDE equation: 

N1 = N0 + B + I – D - E.

By assumption 2 (I = E = 0), 

N1 = N0 + B – D. 

Divide both sides by N0:

• Define:

b = B/N0

= birth rate = # births/individual*unit time

d = D/N0

= death rate = # deaths/individual*unit time 

• With these replacements, we now have:
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Let λ = (1 + b – d), and solve for N1:

N1 = λN0

Assume: λ (finite growth rate) constant over time

N2 = λN1 = λλN0 = λ2N0

N3 = λN2 = λλλN0 = λ3N0

Nt = λtN0

Discrete exponential (or geometric) growth model

⋮

Discrete exponential growth model
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Exponential growth model
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Linear Ordinary Differential Equation (ODE)

r = instantaneous or continuous population growth 
rate

= Malthusian parameter
= Continuous time, per-capita population growth   

rate 
= ln(λ)
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Solution

dN
rN

dt


• A linear ODE

• A typical initial value problem

• Solve it to get (with N at time zero = N0): 

0
rt

tN N e

Continuous exponential growth model
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Exponential model: some relationships

Continuous exponential growth model
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r independent of N
(r constant)

N

d
N

/d
t

dN
rN
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

• Density-independent, deterministic,
unstructured, single  population 

model
• A linear model

Exponential growth

N

r 
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ln(4)
quadruplet

r


ln(2)
doublet

r


ln(3)
triplet

r


• Doubling time

• Tripling time

• Quadrupling time

Doubling/tripling time

Working with real data: the 
whooping cranes

• Only remaining natural migratory flock

• Nearly extinct: only 22 remaining in 
1940’s

Annual censusDecadal census

• Code file: Ex_1_exponential_model.R

• Data: whooping_crane.csv

• Things to do: calculate r, sd(r), project N under 
deterministic and stochastic scenarios 
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Logistic population growth 
model

Point of famine

Density-dependence (DD)

• Dependence of per capita population 
growth rate (r) on present or past 
population density

• Density-dependent models: models that 
incorporate the effects of population 
density on population dynamics

DD generally implies a negative relationship 

Density-dependence: 
mechanisms

• Competition for resources
– Food
– Territories, nest sites, mates, and other limiting 

resources

• Intra-specific strife
– Black bears, Florida panthers

• Stress response 
– Small mammals

• Disease transmission
– Risk of transmission can increase with 

density
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Birth rate (b)

Population size (N)
K

b0

DD b, and density-independent d

Death rate (d)
d

DD d, and density-independent b

Birth rate (b)

Population size (N)
K

d0

Death rate (d)

b

Death rate (d)

Birth rate (b)

Population size (N)
K

d0

b0

DD b and d
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Density-dependent r

Population size (N) K

rmax

0

Linear density-dependence

Density-dependence

• When N = K, b = d, and r = 0, and the 
population stops growing

– K: carrying capacity (or equilibrium density)
– When N = K, r = 0; dN/dt = 0

• K can be viewed as the maximum 
number of individuals an environment 
can support
– N ≤ K, always! 

• Assume:
1. Linear decline in r as N increases 

(linear density-dependence), and
2. K is constant

DD population growth
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Density-dependence
•The linear regression equation is (FYI only):

Y = a + bX,

And, we have

So, our regression equation is:

max
max

r
r r N

K
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Logistic growth model

max
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max 1

r
r r N

K

N
r

K
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 

   
 

Ordinary non-linear differential equation

max 1-
dN N

Nr
dt K

   
 

Exponential:

dN
N

dt
r

Logistic growth model

1-
dN N

rN
dt K

   
 

• The simplest non-linear population growth 
model!

• First derived by Pierre Francois Verhulst in 
1838!!

• Solve this differential equation to get the integral 
form of the logistic growth model
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Integral form

0
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• Notes:

– N can never exceed K

– Note that r here is really rmax

Model behavior

Assumptions

1. No immigration or emigration: “closed” population 
(geographic closure)

2. No age/stage (or spatial) structure

3. No stochasticity

4. Linear decline in r as N increases  linear 
density-dependence

5. Carrying capacity (K) constant

Note:
Assumptions of unlimited environment and constant r are 

replaced by assumptions 4 and 5; 
r is no longer constant
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r is constant and 
density-independent

max 1
N

r r
K

   
 

r is linearly density-
dependent

Comparison

maxr r

dN
rN

dt


1-
dN N

rN
dt K

   
 

dN/dt maximum 
when N = K/2 
(inflection point)

dN/dt is a linear function
of N

Logistic growth model
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Continuous exponential growth model
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0
rt
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•Stable equilibrium at N = K
•Non-linear model

•Unbounded growth or decline 
(“boom” or “bust”)
•No stable equilibrium
•Linear model

 0 01 /
t rt

K
N

K N N e


   
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China’s population growth

• Data: china_pop_size.csv

• Code: Logistic_growth_3.R 

• Things to do: 
– Estimate rmax and K

– Perform population projection using estimated parameters

– Perform stochastic population projection under various 
scenarios

Estimating r and K

1.Plot rt = ln(Nt+1/ Nt) against Nt . If r declines 
linearly as N increases  evidence of DD

2. Perform linear regression with Y = rt against 
Nt

3. rmax = a (Y-intercept)

K = - rmax/b (X-intercept)

*t tr a b N 

Population size (N)

r

K

rmax

0
0Alternative: 

non-linear regression
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Difference equation  discrete time model
rd = “discrete growth factor” = λ - 1

λ = 1 + rd

Discrete logistic growth model

(May 1974)

1 1 t
t t t d

N
N N N r

K
     

 Ricker and Beverton-Holt recruitment models 
also are discrete time DD models

Lord May of Oxford

Chaos
Sensitive dependence on initial conditions
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Life table analysis

Life table analysis
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Exponential model
(deterministic)

Stochastic exponential
model

Add stochasticity

Structured (LT/matrix/IPM) 
model

Add age/stage structure

DD matrix model

Add DD

Stochastic matrix 
model

Add stochasticity

DD, stochastic matrix 
model

Add DD and stochasticity

“Base model”

Logistic model

Add DD

Add stochasticity

Stochastic logistic
model

Taxonomy of population models

Why worry about age structure?

1. Birth and death rates differ among age classes 
(or life-history stages)

2. Age structure can be used for structured 
demographic projections
 Population size, age-structure
 Possible management challenges (wildlife) 
 Health care costs, social security, workforce, dependency 

ratio (humans)

3. Age structure provides useful information 
regarding past history, present or future 
population growth

Age structure matters!

“Age pyramids”

Age pyramid tool:
https://www.populationpyramid.net/
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What is a life table?

• Age-specific summary of survival (and 
reproduction)

• Originally developed by life insurance 
companies

• Routinely used in actuarial, medical and 
ecological research 

• Age: important variable as it is assumed to 
influence survival and reproduction

Age (x) lx mx

0 1 0

1 0.217 1.5

2 0.165 2

3 0.104 2.1

4 0.017 3.5

5 0.009 3.1

6 0.0 0

Ecological life tables

Key life table variables
x = Age

Survival:

lx= Age-specific survivorship

qx = Age-specific mortality

Px = Age-specific survival rate (= 1- qx)

Reproduction:

mx= Age-specific fecundity rate

The average number of daughters born to a 
female of age x per unit time.

Net reproductive rate (R0)

• The average (expected) number of 
daughters produced by a female in her 
lifetime.

0 x xR l m
• Unit:  no. of daughters per female, per generation

• A measure of per-generation population growth 
rate
– R0 > 1 Increasing population

– R0 < 1 Decreasing population

– R0 = 1 Stable population
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Age (x) lx mx lx*mx

0 1 0 1*0 = 0

1 0.217 1.5 0.217*1.5 =0.326 

2 0.165 2 0.165*2 = 0.33

3 0.104 2.1 0.104*2.1 = 0.218

4 0.017 3.5 0.017*3.5 = 0.06

5 0.009 3.1 0.009*3.1 = 0.03

6 0.0
0 0.96x xR l m 

R0 = 0.96

(per fem*gen)

Note: R0 in this context is conceptually identical to 
R0 of COVID-19 or other infectious diseases  

Generation time (G)

• The mean age of the mothers of a newborn 
“cohort”,

• The time required for the population to grow 
by a factor of R0

0

x xxl m
G

R
 

Age (x) lx*mx x*lx*mx

0 0 0*0 = 0

1 0.326 1*0.326 = 0.326 

2 0.33 2*0.33 = 0.66

3 0.218 3*0.218 = 0.655

4 0.06 4*0.06 = 0.24

5 0.03 5*0.03 = 0.15

6 2.018x xxl m 

R0 = 0.96

0

2.018

0.96
2.099 yrs.

x xxl m
G

R







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• Approximate r:

• Exact r Use Lotka-Euler equation

Per capita population growth rate 
(r)

0

 0.0188

ln

ln(0.96)

2.099
 0.0188 / individual*year

e 0.981r

R
r

G

e 





 

  

The Lotka-Euler equation

• Continuous:

• Discrete:

• Solved iteratively

1 rx
x xl m e dx





 

1 rx
x xl m e







The Lotka-Euler equation

• Foundation of stable age theory
– Underlies ALL animal, plant or human demography

• Life history evolution and evolutionary 
studies rely on this theory

• r is possibly the single most important 
quantity in ecology, evolutionary biology 
and wildlife management!!

1 rx
x xl m e dx





  1 rx
x xl m e






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Solving Lotka-Euler equation
• Solved iteratively (i.e., by “trial and error”)

• Calculate R0 and G

• Calculate approximate r:

• Re-arrange the equation, write a function:

• Use uniroot function in R to find the (the largest) root

– Use approximate r to create a search interval

1 rx
x xl m e







0ln R
r

G


1 0rx
x xl m e





 

Yellow-bellied marmots, RMBL, 
Colorado

• Data: marmot_lt_female2. csv

• Code: Ex_3_Life_table_analysis.R

• Things to do: Calculate R0, G, and exact r.

Lecture concludes!
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