

1

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
2

What is a population?

- Population:
- a group of organisms (plants, animals, or microorganisms) of the same species coexisting at the same time and place.
- Population ecology:
- the scientific study of the dynamics, regulation, persistence and evolution of biological populations. \qquad
\qquad

3

How do we study populations?

- Empirical (field/lab) study
- Data and statistical analyses
- Population parameters/characteristics \qquad
- Population models
- Empirical and theoretical models
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
4

Population characteristics/ parameters

\qquad

- Abundance
- Rate of birth (birth rate)
\qquad
- Rate of death (death rate)
- Emigration/immigration rate
\qquad
- Rate of increase (population growth rate)
- Sex ratio
\qquad
- Age or stage structure
- Other: spatial distribution, ...

5

Population models

\qquad

- Needed for understanding things like \qquad
- Future dynamics
- Persistence and viability
- Scenario planning
- Typically, population characteristics are used as model parameters

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
7

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
8

Population growth

- Processes by which individuals are added to a population:

1. Birth (B)
2. Immigration (I)

- Processes by which individuals are removed from a population

1. Death (D)
2. Emigration (E)

- Using these parameters, N_{1} is:

$$
N_{1}=N_{0}+B+I-D-E .
$$

BIDE model

Assumptions

1. Unlimited, homogeneous, and constant environment
2. No immigration or emigration: closed population (geographic closure)
3. Constant birth and death rates (= constant growth rate)

- No density-dependence or stochasticity

4. No age/stage (or spatial) structure
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
10

Discrete exponential growth model
BIDE equation:

$$
N_{1}=N_{0}+B+I-D-E .
$$

By assumption $2(1=E=0)$,

$$
N_{1}=N_{0}+B-D .
$$

Divide both sides by N_{0} :

$$
\frac{N_{1}}{N_{0}}=\frac{N_{0}}{N_{0}}+\frac{B}{N_{0}}-\frac{D}{N_{0}}=1+\frac{B}{N_{0}}-\frac{D}{N_{0}} .
$$

- Define:
$b=B / N_{0}$
= birth rate = \# births/individual*unit time
$d=D / N_{0}$
= death rate = \# deaths/individual*unit time \qquad
- With these replacements, we now have:

$$
\frac{N_{1}}{N_{0}}=1+b-d
$$

$$
\begin{aligned}
& \frac{N_{1}}{N_{0}}=1+b-d, \text { or } N_{1}=N_{0}(1+b-d) \\
& \text { Let } \lambda=(1+b-d), \text { and solve for } N_{1}: \\
& N_{1}=\lambda N_{0}
\end{aligned}
$$

Assume: λ (finite growth rate) constant over time

$$
\begin{aligned}
& N_{2}=\lambda N_{1}=\lambda \lambda N_{0}=\lambda^{2} N_{0} \\
& N_{3}=\lambda N_{2}=\lambda \lambda \lambda N_{0}=\lambda^{3} N_{0}
\end{aligned}
$$

$$
N_{t}=\lambda^{t} N_{0}
$$

Discrete exponential (or geometric) growth model
13

Discrete exponential growth model

\qquad

Time
$N_{t}=\lambda^{t} N_{0}$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
14

Exponential growth model

$$
\frac{d N}{d t}=r N \quad \begin{aligned}
\frac{d N}{d t} & =\lim _{\Delta \rightarrow 0} \frac{\Delta N}{\Delta t} \\
& =\frac{\Delta N}{\Delta t} \text { for small } \Delta t(\Delta t \rightarrow 0)
\end{aligned}
$$

\qquad
\qquad

[^0]\qquad

15

Solution

$$
\frac{d N}{d t}=r N
$$

- A linear ODE
- A typical initial value problem
- Solve it to get (with N at time zero $=N_{0}$):

$$
N_{t}=N_{0} e^{r t}
$$

16

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
17

18

Doubling/tripling time

-Doubling time

$$
t_{\text {double }}=\frac{\ln (2)}{r}
$$

- Tripling time

$$
t_{\text {triple }}=\frac{\ln (3)}{r}
$$

- Quadrupling time

$$
t_{\text {quadruple }}=\frac{\ln (4)}{r}
$$

19

Working with real data: the whooping cranes

- Only remaining natural migratory flock
- Nearly extinct: only 22 remaining in 1940's

20

\qquad
\qquad
\qquad
\qquad
\qquad

- Code file: Ex_1_exponential_model.R
- Data: whooping_crane.csv \qquad
Things to do. calculate r, sd(r), project N under deterministic and stochastic scenarios

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Density-dependence (DD)

- Dependence of per capita population growth rate (r) on present or past population density
- Density-dependent models: models that incorporate the effects of population density on population dynamics

DD generally implies a negative relationship

23

Density-dependence: mechanisms

- Competition for resources
- Food
- Territories, nest sites, mates, and other limiting resources
- Intra-specific strife
- Black bears, Florida panthers
- Stress response
- Small mammals \qquad
- Disease transmission
- Risk of transmission can increase with density

\qquad

25

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

26

27

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Density-dependence

- When $N=K, b=d$, and $r=0$, and the \qquad population stops growing
- K: carrying capacity (or equilibrium density)
- When $N=K, r=0 ; d N / d t=0$ \qquad
- K can be viewed as the maximum \qquad number of individuals an environment can support \qquad $-N \leq K$, alway !

DD population growth

\qquad

- Assume:

1. Linear decline in r as N increases (linear density-dependence), and
2. K is constant

Density-dependence

So, our regression equation is:

$$
r=r_{\max }+\left(-\frac{r_{\max }}{K}\right) N
$$

\qquad
\qquad
\qquad
\qquad
\qquad

31

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

32

Logistic growth model

$$
\frac{d N}{d t}=r N\left(1-\frac{N}{K}\right)
$$

\qquad
\qquad

- The simplest non-linear population growth model!
- First derived by Pierre Francois Verhulst in 1838!! \qquad
- Solve this differential equation to get the integral form of the logistic growth model \qquad
\qquad

$$
N_{t}=\frac{K}{1+\left[\frac{K-N_{0}}{N_{0}}\right] e^{-r t}}
$$

- Notes:
- N can never exceed K
- Note that r here is really $r_{\text {max }}$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
35

Assumptions

\qquad

1. No immigration or emigration: "closed" population (geographic closure)
2. No age/stage (or spatial) structure
3. No stochasticity
4. Linear decline in r as N increases \rightarrow linear density-dependence
5. Carrying capacity (K) constant

\qquad
37

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
38

\qquad

China's population growth

- Data: china_pop_size.csv
- Code: Logistic_growth_3.R
- Things to do:
- Estimate $r_{\text {max }}$ and K
- Perform population projection using estimated parameters
- Perform stochastic population projection under various scenarios

40

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
41

42

Discrete logistic growth model

$$
N_{t+1}=N_{t}+N_{t} r_{d}\left[1-\frac{N_{t}}{K}\right]
$$

Difference equation \rightarrow discrete time model
$r_{d}=$ "discrete growth factor" $=\lambda-1$

$$
>\lambda=1+r_{d}
$$

Ricker and Beverton-Holt recruitment models also are discrete time DD models

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
44

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

46

47

48

\qquad

49

Why worry about age structure?

1. Birth and death rates differ among age classes (or life-history stages)
2. Age structure can be used for structured demographic projections

- Population size, age-structure
- Possible management challenges (wildlife)
- Health care costs, social security, workforce, dependency ratio (humans)

3. Age structure provides useful information regarding past history, present or future population growth

50
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
51

What is a life table?

- Age-specific summary of survival (and reproduction)
- Originally developed by life insurance companies
- Routinely used in actuarial, medical and ecological research
- Age: important variable as it is assumed to influence survival and reproduction

Ecological life tables

Age (x)	l_{x}	m_{x}
0	1	0
1	0.217	1.5
2	0.165	2
3	0.104	2.1
4	0.017	3.5
5	0.009	3.1
6	0.0	0

Key life table variables
$x=$ Age
Survival:
$l_{x}=$ Age-specific survivorship
$q_{x}=$ Age-specific mortality
$P_{x}=$ Age-specific survival rate $\left(=1-q_{x}\right)$
Reproduction:
$m_{x}=$ Age-specific fecundity rate \rightarrow
The average number of daughters born to a
female of age x per unit time.

53

Net reproductive rate $\left(R_{0}\right)$

- The average (expected) number of daughters produced by a female in her lifetime.

$$
R_{0}=\sum l_{x} m_{x}
$$

- Unit: no. of daughters per female, per generation
- A measure of per-generation population growth rate
$-R_{0}>1 \rightarrow$ Increasing population
$-R_{0}<1 \rightarrow$ Decreasing population
$-R_{0}=1 \rightarrow$ Stable population

Age (x)	l_{x}	m_{x}	$l_{x}{ }^{*} m_{x}$		
0	1	0	$1 * 0=0$		
1	0.217	1.5	$0.217^{*} 1.5=0.326$		
2	0.165	2	$0.165 * 2=0.33$		
3	0.104	2.1	$0.104 * 2.1=0.218$		
4	0.017	3.5	$0.017 * 3.5=0.06$		
5	0.009	3.1	$0.009 * 3.1=0.03$		
6	0.0	R_{0}	$=\sum l_{x} m_{x}=0.96$	\quad	Rer fem*gen)
:---					
(pe.96					

Note: R_{0} in this context is conceptually identical to R_{0} of COVID-19 or other infectious diseases

55

Generation time (G)

- The mean age of the mothers of a newborn "cohort",
- The time required for the population to grow by a factor of R_{0}

$$
G=\frac{\sum x l_{x} m_{x}}{R_{0}}
$$

56

Age (x)	$l_{x}{ }^{*} m_{x}$	$x^{*} l_{x}{ }^{*} m_{x}$	$R_{0}=0.96$
0	0	$0 * 0=0$	
1	0.326	$1 * 0.326=0.326$	
2	0.33	$2 * 0.33=0.66$	$\begin{aligned} G & =\frac{\sum x l_{x} m_{x}}{R_{0}} \\ & =\frac{2.018}{0.96} \\ & =2.099 \mathrm{yrs} . \end{aligned}$
3	0.218	$3 * 0.218=0.655$	
4	0.06	$4 * 0.06=0.24$	
5	0.03	$5 * 0.03=0.15$	
6		$x l_{x} m_{x}=2.018$	

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

57
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Per capita population growth rate

(r)

- Approximate r :

$$
\begin{aligned}
r & \approx \frac{\ln R_{0}}{G} \\
& =\frac{\ln (0.96)}{2.099} \\
& =-0.0188 / \text { individual*year } \\
\lambda & \approx \mathrm{e}^{r}=e^{-0.0188}=0.981
\end{aligned}
$$

- Exact $r \rightarrow$ Use Lotka-Euler equation
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
58

The Lotka-Euler equation

- Continuous:

$$
1=\int_{\alpha}^{\infty} l_{x} m_{x} e^{-r x} d x
$$

- Discrete:

$$
1=\sum_{\alpha}^{\infty} l_{x} m_{x} e^{-r x}
$$

- Solved iteratively
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
59

The Lotka-Euler equation

$1=\int_{\alpha}^{\infty} l_{x} m_{x} e^{-r x} d x \quad 1=\sum_{\alpha}^{\infty} l_{x} m_{x} e^{-r x}$

- Foundation of stable age theory
- Underlies ALL animal, plant or human demography
- Life history evolution and evolutionary studies rely on this theory
- r is possibly the single most important quantity in ecology, evolutionary biology and wildlife management!!

Solving Lotka-Euler equation

- Solved iteratively (i.e., by "trial and error") $\quad 1=\sum_{\alpha}^{\omega} l_{x} m_{x} e^{-r x}$ - Calculate R_{0} and G
- Calculate approximate r :

$$
r \approx \frac{\ln R_{0}}{G}
$$

- Re-arrange the equation, write a function:

$$
1-\sum_{\alpha}^{\omega} l_{x} m_{x} e^{-r x}=0
$$

- Use uniroot function in R to find the (the largest) root
- Use approximate r to create a search interval
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
61

Yellow-bellied marmots, RMBL, Colorado

\qquad
\qquad
\qquad
\qquad

- Data: marmot lt female2. csv
- Code: Ex_3_Life_table_analysis.R
- Things to do: Calculate R_{0}, G, and exact r

62

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

[^0]: $r=$ instantaneous or continuous population growth rate
 = Malthusian parameter
 = Continuous time, per-capita population growth rate
 $=\ln (\lambda)$
 Linear Ordinary Differential Equation (ODE)

