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What is a population?

» Population:

— a group of organisms (plants, animals, or
microorganisms) of the same species
coexisting at the same time and place.

» Population ecology:

— the scientific study of the dynamics,
regulation, persistence and evolution of
biological populations.




How do we study populations?

+ Empirical (field/lab) study

— Data and statistical analyses

— Population parameters/characteristics
* Population models

— Empirical and theoretical models

Population characteristics/
parameters
» Abundance
* Rate of birth (birth rate)
* Rate of death (death rate)
» Emigration/immigration rate
» Rate of increase (population growth rate)
» Sex ratio
» Age or stage structure
e Other: spatial distribution, ...

Population models

» Needed for understanding things like
— Future dynamics
— Persistence and viability
— Scenario planning
» Typically, population characteristics are used as
model parameters




Taxonomy of population models

“Base model”

Exponential model
deterministic

‘Add stochasticity

Stochastic exponential
model

Add DD DD matrix model
Logistic model

Add stochasticity

Stochastic logistic D, stochastic matrix
model model

Add age/stage structure

Structured (LT/matrix/IPM)
model

Add stochasticity

model

Add DD and stochasticity

Population growth

* Processes by which individuals are
added to a population:
1. Birth (B)
2. Immigration (/)
* Processes by which individuals are
removed from a population
1. Death (D)
2. Emigration (E)
» Using these parameters, N, is:
N;=Ny+B+I-D-E.

|BIDE model |




Assumptions

Unlimited, homogeneous, and constant environment
2. No immigration or emigration: closed population
(geographic closure)
3. Constant birth and death rates (= constant growth
rate)
» No density-dependence or stochasticity

4. No age/stage (or spatial) structure
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Discrete exponential growth
model

BIDE equation:
N,=N,+B+[/-D-E.
By assumption 2 (I = E = 0),

N, =N,+B-D.

Divide both sides by Ng:
A R
NO N() NO NO NO NO

11

» Define:
b = B/N,
= birth rate = # births/individual*unit time
d=D/N,
= death rate = # deaths/individual*unit time

» With these replacements, we now have:

£=1+b—d.

0

12



%:1—{—17—61', or N, =Ny(1+b-d).

0
Let A= (1 + b — d), and solve for N,:

N;=AN,
Assume: A (finite growth rate) constant over time

N, = AN, = AN, = A2N,
Nj = AN, = AAAN, = AN,

‘ Discrete exponential (or geometric) growth model
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Discrete exponential growth model
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Exponential growth model

P TN
dN L
—=rN AN
’t = Gt for small At (At — 0)

r = instantaneous or continuous population growth
rate

= Malthusian parameter

= Continuous time, per-capita population growth
rate

= In(A)

‘ Linear Ordinary Differential Equation (ODE) ‘
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Solution

dN
dt
*Alinear ODE

* A typical initial value problem
*Solve it to get (with N at time zero = N,):

rN

e rt
N,=N,e
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Continuous exponential growth model
o | N =N e r=0.09
)
=
L2 |
5
2 r=0.0
[3)
o
r=-0.16
Time
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dN/dt

Exponential model: some relationships

Continuous exponential growth model

Exponential growth

size

Time
N
an
=rN

dt

« Density-independent, deterministic,
unstructured, single population
model
« A linear model
N
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Doubling/tripling time

*Doubling time

In(2)
double SRS ST
* Tripling time
In(3)
triple i r
+» Quadrupling time
In(4)
tquadmple ok ]
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Working with real data: the

whooping cranes
* Only remaining natural migratory flock

* Nearly extinct: only 22 remaining in
1940’s
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Poputation size
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* Code file: Ex_1_exponential_model.R
« Data: whooping_crane.csv

» Things to do: calculate r, sd(r), project N under
deterministic and stochastic scenarios
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Number of Individuals

Logistic population growth
model

Carrying
Capacity K

Time
Point of famine
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Density-dependence (DD)

» Dependence of per capita population
growth rate (r) on present or past
population density

» Density-dependent models: models that
incorporate the effects of population
density on population dynamics

DD generally implies a negative relationship
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Density-dependence:

mechanisms

» Competition for resources
— Food

— Territories, nest sites, mates, and other limiting
resources

Intra-specific strife
— Black bears, Florida panthers
+ Stress response
— Small mammals
» Disease transmission

— Risk of transmission can increase with
density
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DD b, and density-independent d

Rate

Birth rate (b)

Death rate (d)

Population size (N)
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DD d, and density-independent b

Birth rate (b)
b
(0]
T
o
Death rate (d)
do
K
Population size (N)
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DD b and d
by
Birth rate (b)
(0] _—
& _—
7
/ H
do Death rate (d)

K
Population size (N)
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Density-dependent r

max|

N ‘ Linear density-dependence

IS

0

Population size (N) w
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Density-dependence

* When N=K, b=d, and r =0, and the
population stops growing

— K: carrying capacity (or equilibrium density)
—When N=K, r=0; dN/dt=0

* K can be viewed as the maximum

number of individuals an environment
can support

— N =K, always!
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DD population growth

e Assume:

1. Linear decline in r as N increases

(linear density-dependence), and
2. Kis constant

30
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Density-dependence

max

Y=a+bX,
And, we have
i3 a:rmax’
B
0 ey
oP Rt K
opulation size
X =N,
ey

So, our regression equation is:

T
— ma:
T e e o A

The linear regression equation is (FYI only):

31

Logistic growth model

dN N Exponential:
_:Nrmax 1-_ d_N:rN

dt et

‘ Ordinary non-linear differential equation ‘
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Logistic growth model
t = rN(l -Ej
K

» The simplest non-linear population growth
model!

» First derived by Pierre Francois Verhulst in
1838!!

* Solve this differential equation to get the integral
form of the logistic growth model

33
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Integral form

N, = 3
1+ bt Eott
No
Notes:

— N can never exceed K
— Note that r here is really r,,,
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Model behavior
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Assumptions
1. No immigration or emigration: “closed” population
(geographic closure)
2. No age/stage (or spatial) structure
3. No stochasticity
4. Linear decline in ras N increases =» linear
density-dependence
5. Carrying capacity (K) constant
Note:
Assumptions of unlimited environment and constant » are
replaced by assumptions 4 and 5;
r is no longer constant
36
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Comparison

ST ris linearly density-
Logistic growth dependent
~ 1 N
Vi=F i
max
K
0
¢
Exponential growth e A
density-independent
~ Ry
T ok
N
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Logistic growth dN N
— =yN[1-=
- dt K
R
% dN/dt maximum
when N = K/2
&2 (inflection point)
N K
Exponential growth
dN
5 =N
= dt
-
dN/dtis a linear function
of N
N
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Logistic growth model Continuous exponential growth model
o80f\ N = % o
kY 1+[(K=N,)/N, |e 8 N =Ng¢ r=09
< 600 o
2 kK — i)
K k]
3_400 ) E_ =00
o / o
o 200 y o r=016
0 10 20 30 40 50 60 70 80 Time

Time

+Stable equilibrium at N = K
*Non-linear model

*Unbounded growth or decline
(“boom” or “bust”)

*No stable equilibrium

Linear model
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China’s population growth

» Data: china_pop_size.csv
* Code: Logistic_growth_3.R
» Things to do:
— Estimate r,,,, and K
— Perform population projection using estimated parameters

— Perform stochastic population projection under various
scenarios
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China - population size
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Estimating rand K

1.Plot »,= In(¥,, ,/ N,) against N, . If r declines
linearly as N increases = evidence of DD

2. Perform linear regression with Y = 7, against
o r, =a+b*N,

max

3. Fmax = a (Y-intercept)

K =-r,,/b (X-intercept) *

max’

Alternative: 0

0
non-linear regression PopR o see. ()

42

14



Discrete logistic growth model

N,
Nt+l =Nt+Ntrd 1_?[

Difference equation = discrete time model
ry = “discrete growth factor” = A - 1
>N=1+r,

» Ricker and Beverton-Holt recruitment models
also are discrete time DD models

(May 1974)
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Lord May of Oxford

Biological with G
Stable Points, Stable Cycles, and Chaos

Abstract. Some of the simplest nonlinear difference equations describing the
growth of biological with can exhibit @
remarkable spectrum of dynamical behavior, from siable equilibrium points, o
stable cyclic oscillations between ? population points, fo siable cycles with 4, 8,
16, . . . points, through o @ chaotic regime in which (depending on the initial
population value) cycles of any period, or even totally aperiodic but bounded
Ppopulation fluctuations, can occur. This rich dynamical structure is overlooked in

its existence [n such fully deterministic non-
vt of considerable mathematical and ecological

wisss

i (for  Specifically, consider the simple non-
nuous  lincar cquation
% the
Nowz Neeplr(1 = N/K)) (1)

equa-  This is considersd by some people (2,
s (for ) to be the difference equation analog
adas), of the logistic differential equation, with
W dis- roand K the wual growth rate and
VY VNV ations  carrying capacity, respectively. The sta-
) Wi be ap-  bility character of this cquation, &3 &

AAAA AAA/ misin  function of increasing r, is set out in
sions. Table 1 and illustrated by Fig. |
tsuch  Another example is

Nea=Ndl 4+l =NJK)]  (2)

Discrete logistic growth
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Chaos
Sensitive dependence on initial conditions
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Bifurcation diagram

150
Il
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Taxonomy of population models

“Base model”

Exponential model
deterministic

Add stochasticity

Stochastic exponential
model

Add DD DD matrix model
Logistic model

Add stochasticity vl Add DD and stochasticity

Stochastic logistic ?D, stochastic matrix
model model

Add age/stage structure

Structured (LT/matrix/IPM)
model

Add stochasticity

Stochastic matrix
model
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Why worry about age structure?

1. Birth and death rates differ among age classes
(or life-history stages)

2. Age structure can be used for structured
demographic projections
= Population size, age-structure
= Possible management challenges (wildlife)

= Health care costs, social security, workforce, dependency
ratio (humans)

3. Age structure provides useful information
regarding past history, present or future
population growth
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Age structure matters!

Rapid growth Slow growth Zero growth
Kenya Ital

United States Year of birth y
Before 1915 Female
1915-1919

1935-193%
1940-1944
1945-1949
19501954
1955-1959

9601964

1965-1969

69
1970-1974
1975-1979

1990-1994 5z |

864202468 864202468 864202468
Percent of population Percent of population Percent of population
FIGURE 10.16

or the human population of Kenya (growing at 2.1% per year),

Age structure pyramids
ng at 0.6% per year), and ltaly (ze wth) for 1995. (From

the United States (g
McFalls 1998.)

Age pyramid tool:
https://www.populationpyramid.net/
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What is a life table?

* Age-specific summary of survival (and
reproduction)

 Originally developed by life insurance
companies

» Routinely used in actuarial, medical and
ecological research

» Age: important variable as it is assumed to
influence survival and reproduction
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Ecological life tables
Age () | L my Key life table variables
SF=Nig
0 e 0 Survival:
1= Age-specific survivorship
1 0217 |15 q, = Age-specific mortality
: : P, = Age-specific survival rate (= 1- ¢,)
2 0.165 |2
Reproduction:
3 0.104 12.1 m= Age-specific fecundity rate=>
The average number of daughters born to a
4 0.017 3.5 female of age x per unit time.
5 0.009 |3.1
6 0.0 0
53

Net reproductive rate (R))

 The average (expected) number of
daughters produced by a female in her

lifetime. Ro 3 Z lx m,

e Unit: no. of daughters per female, per generation

» A measure of per-generation population growth
rate
— R,>1 = Increasing population
— R, <1 =» Decreasing population
— R,=1 = Stable population

54
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Age (v) I, m, 1*m,
0 1 0 1*0=0
1 0.217 %S 0.217*1.5 =0.326
2 0.165 2 0.165*%2 =0.33
3 0.104 2.1 0.104*%2.1 =0.218
4 0.017 3y 0.017*3.5 =0.06
5 0.009 3.1 0.009*3.1 =0.03
6 0.0 Ry|=D Lm =096

R,=0.96
(per fem*gen)

Note: R, in this context is conceptually identical to
Ryof COVID-19 or other infectious diseases
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Generation time (G)
* The mean age of the mothers of a newborn
“cohort”,
¢ The time required for the population to grow
by a factor of R,
il lexmx
R,
56
Age (x) 1 *m, X* *m,
0 0 0*0=0
1| 0326 1¥0.326 = 0.326
2 0.33 2*0.33 = 0.66
3] 0218 3#0.218=0.655| — 2 xlm,
4/ 006 4*0.06 = 0.24 .
2,018
5 003 5%0.03 =0.15 =096
6 S xim, =2018] =20
57

19



Per capita population growth rate

(r)
+ Approximate 7:

_InR,

R

_ In(0.96)

©2.099

= - 0.0188/individual*year

S iC e P S =E()20 B

/7

- Exact r = Use Lotka-Euler equation
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The Lotka-Euler equation

 Continuous:

I'= j [ me "dx

ELEMENTS
OF

 Discrete: M Lo

ifi= Zm:lxmxe’”“

* Solved iteratively
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The Lotka-Euler equation

Kz j [ me "dx e i Ime™
a a

» Foundation of stable age theory
— Underlies ALL animal, plant or human demography
* Life history evolution and evolutionary
studies rely on this theory

* ris possibly the single most important
quantity in ecology, evolutionary biology
and wildlife management!!

60
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Solving Lotka-Euler equation
» Solved iteratively (i.e., by “trial and error™) i Z Ime™
» Calculate R, and G =
* Calculate approximate 7:

ek In R,
G

* Re-arrange the equation, write a function:
(.

i ZU:lxmxe'”‘ =0

» Use uniroot function in R to find the (the largest) root
— Use approximate r to create a search interval
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Yellow-bellied marmots, RMBL,
Colotado

_ ,wm"?-.“;

» Data: marmot_It female2. csv
» Code: Ex 3 _Life table analysis.R
+ Things to do: Calculate R, G, and exact r.
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Lecture concludes!

63
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