Stuff below should all be sex-specific and grid-specific (e.g., grid 1 treatment, grid 1 control, …), even though juvenile survival would be the same for both sexes and all grids. Juvenile population size should be sex- and grid-specific, based on the last set of analyses that you did. And I agree with you that the “p(prepost)+c_Huggins” model provides estimates that are more sensible than the mixture models (and as you point out the mixture parameter is suggestive of something approaching a single group anyway. I am omitting extra superscripts to make this simpler (for me).
\[ \lambda_t = S_t + f_t \]
where:
\[ f_t = \frac{N'_t (S'_t) + I_t}{N_t} \]
where:
Would like to compute the following:
\(Pr(ISR_t) = \frac{\hat{N'_t}(S'_t)}{\hat{N_t}} / \hat{f}_t = \frac{\hat{f}_t \hat{N'_t}(S'_t)}{\hat{N_t}}\)
Estimates of adult S, f, and N for each grid, occasion and sex can be taken from the temporal symmetry model used to compute recruitment parameters, f, and recruitment MES. Estimates of young survival and abundance can be taken from the recent analyses you did for young animals (just 4 estimates, right? Treatment and control grids for pretreatment and posttreatment periods).
Output of these analyses would be sex- and time-specific estimates of immigration rate \(\widehat{I_t / N_t}\) , in situ reproductive rate \(\frac{N'_t(S'_t)}{N_t}\) and proportional contribution \(Pr(ISR_t)\) , separately for males and females for each grid. Would also like simple arithmetic means of these 3 quantities for the following periods (again by sex and grid), pretreatment (i.e., mean for all pretreatment occasions) and posttreatment.
fname1=list.files(paste0(ddir,'juv'),'juv.+vcv')[1]
fname2=paste0(ddir,'juv/',gsub('vcv','out',fname1))
x=readLines(fname2)
i=grep(':S g',x)
rnames=substr(x[i],8,22)
rnames=gsub('c1 a0 t','pre',gsub('c8.2925','post',rnames))
j=grep('gJ',rnames)
v=readMarkVcv(paste0(ddir,'juv/',fname1))$real[j,] ; rownames(v)=rnames[j]
Sy = matrix(unlist(sapply(1:4,
function(k) rep(v[k,1],rep(c(4,7),4)[k]))),ncol=11,byrow=T)
Sy=apply(apply(Sy,2,rep,each=2), 2, rep, 4)
Sy.se = matrix(unlist(sapply(1:4,
function(j) rep(v[j,2],rep(c(4,7),4)[j]))),ncol=11,byrow=T)
Sy.se=apply(apply(Sy.se,2,rep,each=2), 2, rep, 4)
i=grep('N-hat',x)+2; j=grep('proc stop',x)-3
grp=as.numeric(substr(x[i:j],1,4))
sess=as.numeric(substr(x[i:j],6,10))
Ny= t(matrix(as.numeric(substr(x[i:j],12,24)), max(sess), max(grp)))
Ny.se=t(matrix(as.numeric(substr(x[i:j],25,39)), max(sess), max(grp)))
gnames=gsub('age','',gsub('.sex','',gsub('.grid','',gsub('.+=age','',x[grep('glabel',x)]))))
rownames(Ny)=rownames(Ny.se)=gsub(';','',gnames)
Ny=Ny[grep('J',rownames(Ny)),]
Ny.se=Ny.se[grep('J',rownames(Ny)),]
rownames(Sy)=rownames(Sy.se)=rownames(Ny)=rownames(Ny.se)=gsub('J','',rownames(Ny))
Sy[1:4,]=Sy[c(3,4,1,2),]; Ny[1:4,]=Ny[c(3,4,1,2),]
rownames(Sy)[1:4]=rownames(Ny)[1:4]=rownames(Sy)[c(3,4,1,2)]
knitr::kable(round(Sy,4), 'pipe', align='cc',col.names=paste0(1:ncol(Sy)),
caption=paste('Juvenile Survival',fname2))
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | |
---|---|---|---|---|---|---|---|---|---|---|---|
F1T | 0.6176 | 0.6176 | 0.6176 | 0.6176 | 0.7390 | 0.7390 | 0.7390 | 0.7390 | 0.7390 | 0.7390 | 0.7390 |
M1T | 0.6176 | 0.6176 | 0.6176 | 0.6176 | 0.7390 | 0.7390 | 0.7390 | 0.7390 | 0.7390 | 0.7390 | 0.7390 |
F1C | 0.7174 | 0.7174 | 0.7174 | 0.7174 | 0.6707 | 0.6707 | 0.6707 | 0.6707 | 0.6707 | 0.6707 | 0.6707 |
M1C | 0.7174 | 0.7174 | 0.7174 | 0.7174 | 0.6707 | 0.6707 | 0.6707 | 0.6707 | 0.6707 | 0.6707 | 0.6707 |
F2C | 0.7174 | 0.7174 | 0.7174 | 0.7174 | 0.6707 | 0.6707 | 0.6707 | 0.6707 | 0.6707 | 0.6707 | 0.6707 |
M2C | 0.7174 | 0.7174 | 0.7174 | 0.7174 | 0.6707 | 0.6707 | 0.6707 | 0.6707 | 0.6707 | 0.6707 | 0.6707 |
F2T | 0.6176 | 0.6176 | 0.6176 | 0.6176 | 0.7390 | 0.7390 | 0.7390 | 0.7390 | 0.7390 | 0.7390 | 0.7390 |
M2T | 0.6176 | 0.6176 | 0.6176 | 0.6176 | 0.7390 | 0.7390 | 0.7390 | 0.7390 | 0.7390 | 0.7390 | 0.7390 |
F3C | 0.7174 | 0.7174 | 0.7174 | 0.7174 | 0.6707 | 0.6707 | 0.6707 | 0.6707 | 0.6707 | 0.6707 | 0.6707 |
M3C | 0.7174 | 0.7174 | 0.7174 | 0.7174 | 0.6707 | 0.6707 | 0.6707 | 0.6707 | 0.6707 | 0.6707 | 0.6707 |
F3T | 0.6176 | 0.6176 | 0.6176 | 0.6176 | 0.7390 | 0.7390 | 0.7390 | 0.7390 | 0.7390 | 0.7390 | 0.7390 |
M3T | 0.6176 | 0.6176 | 0.6176 | 0.6176 | 0.7390 | 0.7390 | 0.7390 | 0.7390 | 0.7390 | 0.7390 | 0.7390 |
F4C | 0.7174 | 0.7174 | 0.7174 | 0.7174 | 0.6707 | 0.6707 | 0.6707 | 0.6707 | 0.6707 | 0.6707 | 0.6707 |
M4C | 0.7174 | 0.7174 | 0.7174 | 0.7174 | 0.6707 | 0.6707 | 0.6707 | 0.6707 | 0.6707 | 0.6707 | 0.6707 |
F4T | 0.6176 | 0.6176 | 0.6176 | 0.6176 | 0.7390 | 0.7390 | 0.7390 | 0.7390 | 0.7390 | 0.7390 | 0.7390 |
M4T | 0.6176 | 0.6176 | 0.6176 | 0.6176 | 0.7390 | 0.7390 | 0.7390 | 0.7390 | 0.7390 | 0.7390 | 0.7390 |
knitr::kable(round(Ny,2), 'pipe', col.names=paste0(1:ncol(Ny)),
caption=paste('Juvenile Population Sizes',fname2))
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
F1T | 1.28 | 1.48 | 0.00 | 0.00 | 8.89 | 15.62 | 12.76 | 5.67 | 10.48 | 4.66 | 1.16 | 5.25 |
M1T | 1.28 | 1.48 | 1.67 | 0.00 | 11.11 | 9.61 | 6.38 | 9.07 | 7.48 | 4.66 | 0.00 | 3.50 |
F1C | 0.00 | 1.48 | 1.67 | 3.63 | 10.00 | 4.81 | 3.19 | 3.40 | 4.49 | 6.22 | 0.00 | 0.00 |
M1C | 0.00 | 1.48 | 3.35 | 2.42 | 2.22 | 2.40 | 0.00 | 5.67 | 2.99 | 1.55 | 2.31 | 1.75 |
F2C | 3.83 | 2.96 | 1.67 | 3.63 | 7.77 | 4.81 | 4.25 | 5.67 | 5.99 | 4.66 | 2.31 | 3.50 |
M2C | 0.00 | 1.48 | 0.00 | 2.42 | 4.44 | 6.01 | 4.25 | 6.81 | 5.99 | 1.55 | 0.00 | 0.00 |
F2T | 0.00 | 0.00 | 0.00 | 1.21 | 1.11 | 1.20 | 2.13 | 2.27 | 5.99 | 7.77 | 2.31 | 3.50 |
M2T | 0.00 | 1.48 | 1.67 | 2.42 | 2.22 | 2.40 | 6.38 | 6.81 | 8.98 | 9.32 | 2.31 | 8.75 |
F3C | 1.28 | 2.96 | 1.67 | 1.21 | 1.11 | 3.60 | 1.06 | 12.48 | 2.99 | 7.77 | 3.47 | 3.50 |
M3C | 1.28 | 1.48 | 0.00 | 2.42 | 5.55 | 3.60 | 2.13 | 11.34 | 2.99 | 9.32 | 0.00 | 0.00 |
F3T | 2.55 | 0.00 | 1.67 | 0.00 | 1.11 | 2.40 | 10.63 | 13.61 | 11.97 | 6.22 | 1.16 | 0.00 |
M3T | 2.55 | 0.00 | 0.00 | 0.00 | 3.33 | 8.41 | 6.38 | 10.21 | 8.98 | 4.66 | 3.47 | 0.00 |
F4C | 1.28 | 2.96 | 0.00 | 4.84 | 8.89 | 6.01 | 8.50 | 9.07 | 5.99 | 0.00 | 0.00 | 0.00 |
M4C | 0.00 | 0.00 | 0.00 | 3.63 | 2.22 | 1.20 | 2.13 | 1.13 | 0.00 | 0.00 | 1.16 | 0.00 |
F4T | 1.28 | 0.00 | 0.00 | 3.63 | 11.11 | 4.81 | 12.76 | 9.07 | 8.98 | 6.22 | 4.62 | 1.75 |
M4T | 3.83 | 2.96 | 1.67 | 3.63 | 3.33 | 2.40 | 6.38 | 10.21 | 5.99 | 6.22 | 4.62 | 1.75 |
fnames=list.files(paste0(ddir,'pradel2'),'^g[1234].+f.trtgridXper[+]sex[)].+vcv')
phi=phi.se=f=f.se=N=N.se=NULL
for (g in 1:4) {
fname1=paste0(ddir,'pradel2/',fnames[g])
x=readLines(gsub('vcv','out',fname1))
i=grep('time interval',x); j=grep(';',x[i+0:22])[1]
v=gsub('.+INPUT --- +','',gsub('time interval ','',x[i-1+1:j]))
v=unlist(strsplit(v,' ')); v=v[v!="0" & nchar(v)>0]; ti=as.numeric(v[1:11])
i=grep(':Phi g',x); ii=grep(':f g',x)
rnames=substr(x[i],8,22)
k=grep('a[0135][ .]',rnames)
rnames[k]=gsub('a.+','pre',rnames[k])
rnames[-k]=gsub('a.+','post',rnames[-k])
if (g==1) rnames=gsub('g','',gsub('e ','T',gsub('w ','C',rnames)))
if (g>1) rnames=gsub('g','',gsub('e ','C',gsub('w ','T',rnames)))
v=readMarkVcv(fname1)$real
phi=rbind(phi,matrix(v[1:length(i),1], nrow=4, byrow=T))
phi.se=rbind(phi.se,matrix(v[1:length(i),2], nrow=4, byrow=T))
f=rbind(f,matrix(unlist(sapply(1:8,
function(j) rep(v[length(i)+1:length(ii),1][j],rep(c(4,7),4)[j]))),nrow=4,byrow=T))
f.se=rbind(f.se,matrix(unlist(sapply(1:8,
function(j) rep(v[length(i)+1:length(ii),2][j],rep(c(4,7),4)[j]))),nrow=4,byrow=T))
i=grep('N-hat',x)+2; j=grep('Lambda Est',x)-1
grp=as.numeric(substr(x[i:j],1,4))
sess=as.numeric(substr(x[i:j],6,10))
N=rbind(N, t(matrix(as.numeric(substr(x[i:j],12,24)), max(sess), max(grp))))
N.se=rbind(N.se, t(matrix(as.numeric(substr(x[i:j],25,39)), max(sess), max(grp))))
}
rnames=paste0(rep(c('F','M'),8), rep(1:4,each=4), rep(rep(c('C','T'),each=2),4))
rnames[1:4]=c('F1T','M1T','F1C','M1C')
rownames(N)=rownames(N.se)=rownames(f)=rownames(phi)=rnames
print(kable_styling(kable(f,digits=4, valign='t',
caption=paste('Adult recruitment:',
gsub('.+/','',fname1)))))
F1T | 0.2271 | 0.2271 | 0.2271 | 0.2271 | 0.1756 | 0.1756 | 0.1756 | 0.1756 | 0.1756 | 0.1756 | 0.1756 |
M1T | 0.3297 | 0.3297 | 0.3297 | 0.3297 | 0.1730 | 0.1730 | 0.1730 | 0.1730 | 0.1730 | 0.1730 | 0.1730 |
F1C | 0.2560 | 0.2560 | 0.2560 | 0.2560 | 0.1979 | 0.1979 | 0.1979 | 0.1979 | 0.1979 | 0.1979 | 0.1979 |
M1C | 0.3716 | 0.3716 | 0.3716 | 0.3716 | 0.1949 | 0.1949 | 0.1949 | 0.1949 | 0.1949 | 0.1949 | 0.1949 |
F2C | 0.3283 | 0.3283 | 0.3283 | 0.3283 | 0.1626 | 0.1626 | 0.1626 | 0.1626 | 0.1626 | 0.1626 | 0.1626 |
M2C | 0.3301 | 0.3301 | 0.3301 | 0.3301 | 0.2204 | 0.2204 | 0.2204 | 0.2204 | 0.2204 | 0.2204 | 0.2204 |
F2T | 0.4090 | 0.4090 | 0.4090 | 0.4090 | 0.2026 | 0.2026 | 0.2026 | 0.2026 | 0.2026 | 0.2026 | 0.2026 |
M2T | 0.4113 | 0.4113 | 0.4113 | 0.4113 | 0.2747 | 0.2747 | 0.2747 | 0.2747 | 0.2747 | 0.2747 | 0.2747 |
F3C | 0.3844 | 0.3844 | 0.3844 | 0.3844 | 0.1620 | 0.1620 | 0.1620 | 0.1620 | 0.1620 | 0.1620 | 0.1620 |
M3C | 0.3631 | 0.3631 | 0.3631 | 0.3631 | 0.1971 | 0.1971 | 0.1971 | 0.1971 | 0.1971 | 0.1971 | 0.1971 |
F3T | 0.4397 | 0.4397 | 0.4397 | 0.4397 | 0.1853 | 0.1853 | 0.1853 | 0.1853 | 0.1853 | 0.1853 | 0.1853 |
M3T | 0.4154 | 0.4154 | 0.4154 | 0.4154 | 0.2255 | 0.2255 | 0.2255 | 0.2255 | 0.2255 | 0.2255 | 0.2255 |
F4C | 0.3026 | 0.3026 | 0.3026 | 0.3026 | 0.2171 | 0.2171 | 0.2171 | 0.2171 | 0.2171 | 0.2171 | 0.2171 |
M4C | 0.2853 | 0.2853 | 0.2853 | 0.2853 | 0.1703 | 0.1703 | 0.1703 | 0.1703 | 0.1703 | 0.1703 | 0.1703 |
F4T | 0.3299 | 0.3299 | 0.3299 | 0.3299 | 0.2368 | 0.2368 | 0.2368 | 0.2368 | 0.2368 | 0.2368 | 0.2368 |
M4T | 0.3111 | 0.3111 | 0.3111 | 0.3111 | 0.1858 | 0.1858 | 0.1858 | 0.1858 | 0.1858 | 0.1858 | 0.1858 |
print(kable_styling(kable(phi,digits=4, valign='t', caption=paste('Adult Survival:',
gsub('.+/','',fname1)))))
F1T | 0.7917 | 0.8174 | 0.8100 | 0.6846 | 0.9718 | 0.8466 | 0.8375 | 0.9044 | 0.8469 | 0.2471 | 0.7777 |
M1T | 0.9394 | 0.9407 | 0.8856 | 0.7065 | 0.8420 | 0.8387 | 0.6934 | 0.7184 | 0.9207 | 0.6021 | 0.6357 |
F1C | 0.7409 | 0.7711 | 0.7623 | 0.6202 | 0.9629 | 0.8059 | 0.7950 | 0.8768 | 0.8062 | 0.1980 | 0.7247 |
M1C | 0.9211 | 0.9227 | 0.8535 | 0.6443 | 0.8004 | 0.7964 | 0.6298 | 0.6574 | 0.8973 | 0.5324 | 0.5676 |
F2C | 0.9519 | 0.8393 | 0.8634 | 0.7768 | 0.8817 | 0.8374 | 0.8369 | 0.8796 | 0.7599 | 0.5644 | 0.8987 |
M2C | 0.6956 | 0.7792 | 0.7320 | 0.6379 | 0.7389 | 0.8768 | 0.8979 | 0.9455 | 0.9132 | 0.4379 | 0.8696 |
F2T | 0.9252 | 0.7653 | 0.7978 | 0.6849 | 0.8232 | 0.7629 | 0.7622 | 0.8203 | 0.6640 | 0.4472 | 0.8471 |
M2T | 0.5880 | 0.6879 | 0.6304 | 0.5238 | 0.6386 | 0.8163 | 0.8459 | 0.9154 | 0.8679 | 0.3272 | 0.8063 |
F3C | 0.7563 | 0.8399 | 0.7136 | 0.9413 | 0.9061 | 0.9097 | 0.8594 | 0.8175 | 0.8467 | 0.6541 | 0.4905 |
M3C | 0.8000 | 0.8790 | 0.7747 | 0.7353 | 0.8499 | 0.8911 | 0.8229 | 0.8798 | 0.8699 | 0.6721 | 0.9201 |
F3T | 0.6709 | 0.7750 | 0.6206 | 0.9132 | 0.8637 | 0.8687 | 0.8006 | 0.7463 | 0.7839 | 0.5540 | 0.3874 |
M3T | 0.7242 | 0.8267 | 0.6931 | 0.6459 | 0.7881 | 0.8432 | 0.7532 | 0.8278 | 0.8145 | 0.5738 | 0.8833 |
F4C | 0.8638 | 0.7546 | 0.7105 | 0.8378 | 0.7274 | 0.7471 | 0.8557 | 0.7458 | 0.5475 | 0.6122 | 0.5817 |
M4C | 0.8076 | 0.8749 | 0.7168 | 0.8064 | 0.8240 | 0.8899 | 0.8434 | 0.9001 | 0.7513 | 0.6916 | 0.8251 |
F4T | 0.8424 | 0.7216 | 0.6741 | 0.8132 | 0.6921 | 0.7135 | 0.8333 | 0.7120 | 0.5049 | 0.5708 | 0.5395 |
M4T | 0.7796 | 0.8550 | 0.6809 | 0.7783 | 0.7978 | 0.8720 | 0.8194 | 0.8837 | 0.7179 | 0.6540 | 0.7990 |
print(kable_styling(kable(N,digits=2, col.names=paste(1:ncol(N)), caption='Adult Population size')))
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
F1T | 42.29 | 49.63 | 40.82 | 46.30 | 28.25 | 65.92 | 52.93 | 74.23 | 59.81 | 78.31 | 13.37 | 11.75 |
M1T | 20.58 | 32.52 | 47.35 | 62.57 | 88.13 | 90.13 | 87.82 | 69.86 | 61.23 | 54.67 | 29.71 | 28.83 |
F1C | 42.29 | 39.36 | 32.66 | 41.30 | 25.99 | 57.85 | 45.72 | 61.13 | 62.65 | 69.45 | 7.43 | 4.27 |
M1C | 20.58 | 32.52 | 68.58 | 91.35 | 70.05 | 64.57 | 69.78 | 62.22 | 49.84 | 62.06 | 34.17 | 11.75 |
F2C | 14.93 | 26.61 | 34.15 | 45.57 | 57.87 | 84.59 | 76.97 | 73.76 | 64.94 | 45.90 | 23.14 | 38.10 |
M2C | 11.94 | 23.81 | 25.24 | 22.17 | 14.47 | 13.68 | 19.24 | 34.71 | 42.09 | 49.95 | 22.04 | 32.65 |
F2T | 23.88 | 39.21 | 37.12 | 45.57 | 60.50 | 65.93 | 81.24 | 60.74 | 64.94 | 56.69 | 15.43 | 29.03 |
M2T | 16.42 | 22.40 | 20.79 | 19.70 | 27.62 | 12.44 | 20.31 | 41.22 | 49.30 | 49.95 | 9.92 | 19.96 |
F3C | 16.15 | 23.81 | 25.47 | 21.93 | 48.16 | 71.89 | 79.30 | 89.09 | 63.76 | 52.32 | 50.96 | 27.41 |
M3C | 17.23 | 15.41 | 25.47 | 26.31 | 39.05 | 47.92 | 50.46 | 52.80 | 62.17 | 44.63 | 28.31 | 67.00 |
F3T | 18.31 | 26.62 | 31.13 | 35.08 | 58.57 | 71.89 | 73.12 | 83.59 | 78.11 | 73.87 | 32.84 | 9.14 |
M3T | 19.39 | 12.61 | 19.81 | 21.93 | 31.24 | 39.21 | 43.25 | 66.00 | 71.74 | 53.86 | 19.25 | 35.02 |
F4C | 46.26 | 45.23 | 34.26 | 60.11 | 61.70 | 68.54 | 63.87 | 98.94 | 67.98 | 33.19 | 17.47 | 14.62 |
M4C | 29.10 | 27.72 | 42.42 | 42.94 | 53.23 | 60.23 | 66.00 | 77.33 | 75.70 | 56.70 | 37.12 | 53.17 |
F4T | 35.72 | 42.31 | 50.57 | 25.76 | 55.65 | 63.35 | 48.97 | 67.10 | 57.16 | 20.75 | 17.47 | 18.61 |
M4T | 37.04 | 51.06 | 71.78 | 38.03 | 54.44 | 58.15 | 72.38 | 95.53 | 84.97 | 60.85 | 28.39 | 41.21 |
\[\hat{I_t/N_t} = \hat{f_t} - \frac{\hat{N'_t} (S'_t)}{\hat{N_t}}\]
l=ncol(f)
I = f - Ny[,1:l]*Sy[,1:l]/N[,1:l]
print(kable_styling(kable(I,digits=4, col.names=paste(1:ncol(I)),
table.attr = 'class="striped", format = "html"',
caption='Immigration Rates')))
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | |
---|---|---|---|---|---|---|---|---|---|---|---|
F1T | 0.2085 | 0.2087 | 0.2271 | 0.2271 | -0.0569 | 0.0005 | -0.0025 | 0.1191 | 0.0461 | 0.1316 | 0.1117 |
M1T | 0.2914 | 0.3015 | 0.3079 | 0.3297 | 0.0798 | 0.0942 | 0.1193 | 0.0770 | 0.0826 | 0.1099 | 0.1730 |
F1C | 0.2560 | 0.2290 | 0.2192 | 0.1929 | -0.0601 | 0.1421 | 0.1511 | 0.1605 | 0.1498 | 0.1378 | 0.1979 |
M1C | 0.3716 | 0.3389 | 0.3365 | 0.3525 | 0.1737 | 0.1700 | 0.1949 | 0.1338 | 0.1547 | 0.1781 | 0.1495 |
F2C | 0.1442 | 0.2484 | 0.2931 | 0.2711 | 0.0725 | 0.1245 | 0.1256 | 0.1111 | 0.1008 | 0.0945 | 0.0956 |
M2C | 0.3301 | 0.2855 | 0.3301 | 0.2517 | 0.0145 | -0.0740 | 0.0722 | 0.0889 | 0.1250 | 0.1996 | 0.2204 |
F2T | 0.4090 | 0.4090 | 0.4090 | 0.3926 | 0.1891 | 0.1892 | 0.1833 | 0.1750 | 0.1345 | 0.1014 | 0.0919 |
M2T | 0.4113 | 0.3705 | 0.3616 | 0.3354 | 0.2152 | 0.1319 | 0.0426 | 0.1527 | 0.1401 | 0.1367 | 0.1024 |
F3C | 0.3277 | 0.2952 | 0.3373 | 0.3448 | 0.1465 | 0.1284 | 0.1530 | 0.0681 | 0.1305 | 0.0624 | 0.1164 |
M3C | 0.3100 | 0.2942 | 0.3631 | 0.2971 | 0.1018 | 0.1467 | 0.1689 | 0.0531 | 0.1648 | 0.0570 | 0.1971 |
F3T | 0.3536 | 0.4397 | 0.4065 | 0.4397 | 0.1713 | 0.1606 | 0.0779 | 0.0650 | 0.0720 | 0.1231 | 0.1593 |
M3T | 0.3340 | 0.4154 | 0.4154 | 0.4154 | 0.1467 | 0.0670 | 0.1165 | 0.1112 | 0.1330 | 0.1615 | 0.0924 |
F4C | 0.2828 | 0.2556 | 0.3026 | 0.2448 | 0.1205 | 0.1583 | 0.1278 | 0.1556 | 0.1581 | 0.2171 | 0.2171 |
M4C | 0.2853 | 0.2853 | 0.2853 | 0.2246 | 0.1424 | 0.1570 | 0.1487 | 0.1605 | 0.1703 | 0.1703 | 0.1495 |
F4T | 0.3079 | 0.3299 | 0.3299 | 0.2429 | 0.0893 | 0.1807 | 0.0442 | 0.1368 | 0.1207 | 0.0154 | 0.0411 |
M4T | 0.2473 | 0.2753 | 0.2967 | 0.2522 | 0.1405 | 0.1552 | 0.1206 | 0.1068 | 0.1337 | 0.1103 | 0.0654 |
Imean = cbind(rowMeans(I[,1:4]),rowMeans(I[,5:11]))
colnames(Imean) = c('pre-treatment','post-treatment')
print(kable_styling(kable(Imean,digits=4,
table.attr = 'class="striped", format = "html"',
caption='Mean immigration rate estimates')))
pre-treatment | post-treatment | |
---|---|---|
F1T | 0.2179 | 0.0499 |
M1T | 0.3076 | 0.1051 |
F1C | 0.2243 | 0.1256 |
M1C | 0.3499 | 0.1650 |
F2C | 0.2392 | 0.1035 |
M2C | 0.2994 | 0.0924 |
F2T | 0.4049 | 0.1520 |
M2T | 0.3697 | 0.1317 |
F3C | 0.3262 | 0.1151 |
M3C | 0.3161 | 0.1271 |
F3T | 0.4099 | 0.1185 |
M3T | 0.3950 | 0.1183 |
F4C | 0.2714 | 0.1649 |
M4C | 0.2702 | 0.1570 |
F4T | 0.3026 | 0.0898 |
M4T | 0.2679 | 0.1189 |
\[ \frac{\hat{N'_t} (S'_t)}{\hat{N_t}}\]
l=ncol(f)
rr = Ny[,1:l]*Sy[,1:l]/N[,1:l]
print(kable_styling(kable(rr,digits=4, col.names=paste(1:ncol(I)),
table.attr = 'class="striped", format = "html"',
caption='In situ reproductive rates')))
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | |
---|---|---|---|---|---|---|---|---|---|---|---|
F1T | 0.0186 | 0.0184 | 0.0000 | 0.0000 | 0.2325 | 0.1751 | 0.1781 | 0.0565 | 0.1294 | 0.0440 | 0.0639 |
M1T | 0.0383 | 0.0281 | 0.0218 | 0.0000 | 0.0931 | 0.0788 | 0.0537 | 0.0960 | 0.0903 | 0.0630 | 0.0000 |
F1C | 0.0000 | 0.0270 | 0.0368 | 0.0631 | 0.2580 | 0.0557 | 0.0468 | 0.0373 | 0.0481 | 0.0600 | 0.0000 |
M1C | 0.0000 | 0.0327 | 0.0350 | 0.0190 | 0.0213 | 0.0250 | 0.0000 | 0.0611 | 0.0403 | 0.0168 | 0.0454 |
F2C | 0.1840 | 0.0799 | 0.0351 | 0.0572 | 0.0901 | 0.0381 | 0.0371 | 0.0516 | 0.0618 | 0.0681 | 0.0670 |
M2C | 0.0000 | 0.0446 | 0.0000 | 0.0784 | 0.2060 | 0.2944 | 0.1482 | 0.1315 | 0.0954 | 0.0209 | 0.0000 |
F2T | 0.0000 | 0.0000 | 0.0000 | 0.0164 | 0.0136 | 0.0135 | 0.0193 | 0.0276 | 0.0681 | 0.1013 | 0.1108 |
M2T | 0.0000 | 0.0408 | 0.0497 | 0.0759 | 0.0594 | 0.1427 | 0.2321 | 0.1220 | 0.1346 | 0.1379 | 0.1723 |
F3C | 0.0567 | 0.0893 | 0.0471 | 0.0396 | 0.0155 | 0.0336 | 0.0090 | 0.0939 | 0.0315 | 0.0996 | 0.0456 |
M3C | 0.0531 | 0.0690 | 0.0000 | 0.0660 | 0.0954 | 0.0504 | 0.0283 | 0.1441 | 0.0323 | 0.1401 | 0.0000 |
F3T | 0.0861 | 0.0000 | 0.0332 | 0.0000 | 0.0140 | 0.0247 | 0.1074 | 0.1203 | 0.1133 | 0.0622 | 0.0260 |
M3T | 0.0813 | 0.0000 | 0.0000 | 0.0000 | 0.0788 | 0.1585 | 0.1090 | 0.1143 | 0.0925 | 0.0640 | 0.1331 |
F4C | 0.0198 | 0.0470 | 0.0000 | 0.0578 | 0.0966 | 0.0588 | 0.0893 | 0.0615 | 0.0591 | 0.0000 | 0.0000 |
M4C | 0.0000 | 0.0000 | 0.0000 | 0.0607 | 0.0280 | 0.0134 | 0.0216 | 0.0098 | 0.0000 | 0.0000 | 0.0209 |
F4T | 0.0221 | 0.0000 | 0.0000 | 0.0871 | 0.1475 | 0.0561 | 0.1925 | 0.0999 | 0.1161 | 0.2214 | 0.1956 |
M4T | 0.0638 | 0.0358 | 0.0144 | 0.0590 | 0.0452 | 0.0305 | 0.0651 | 0.0790 | 0.0521 | 0.0755 | 0.1204 |
rrmean = cbind(rowMeans(rr[,1:4]),rowMeans(rr[,5:11]))
colnames(rrmean) = c('pre-treatment','post-treatment')
print(kable_styling(kable(rrmean,digits=4,
table.attr = 'class="striped", format = "html"',
caption='Mean *In situ* reproductive rates')))
pre-treatment | post-treatment | |
---|---|---|
F1T | 0.0093 | 0.1256 |
M1T | 0.0221 | 0.0678 |
F1C | 0.0317 | 0.0723 |
M1C | 0.0217 | 0.0300 |
F2C | 0.0891 | 0.0591 |
M2C | 0.0308 | 0.1280 |
F2T | 0.0041 | 0.0506 |
M2T | 0.0416 | 0.1430 |
F3C | 0.0582 | 0.0470 |
M3C | 0.0470 | 0.0701 |
F3T | 0.0298 | 0.0668 |
M3T | 0.0203 | 0.1072 |
F4C | 0.0311 | 0.0522 |
M4C | 0.0152 | 0.0134 |
F4T | 0.0273 | 0.1470 |
M4T | 0.0433 | 0.0668 |
\(Pr(ISR_t) = \frac{\hat{N'_t}(S'_t)}{\hat{N_t}} / \hat{f}_t = \frac{\hat{f}_t \hat{N'_t}(S'_t)}{\hat{N_t}}\)
contR2R = Ny[,1:l]*Sy[,1:l]/N[,1:l]/f
print(kable_styling(kable(contR2R,digits=4, col.names=paste(1:ncol(I)),
table.attr = 'class="striped", format = "html"',
caption='Proportional contribution of in situ reproduction to recruitment')))
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | |
---|---|---|---|---|---|---|---|---|---|---|---|
F1T | 0.0821 | 0.0812 | 0.0000 | 0.0000 | 1.3241 | 0.9974 | 1.0144 | 0.3216 | 0.7373 | 0.2506 | 0.3640 |
M1T | 0.1162 | 0.0854 | 0.0662 | 0.0000 | 0.5385 | 0.4556 | 0.3103 | 0.5549 | 0.5222 | 0.3643 | 0.0000 |
F1C | 0.0000 | 0.1055 | 0.1436 | 0.2465 | 1.3038 | 0.2816 | 0.2365 | 0.1887 | 0.2429 | 0.3034 | 0.0000 |
M1C | 0.0000 | 0.0880 | 0.0942 | 0.0512 | 0.1091 | 0.1280 | 0.0000 | 0.3136 | 0.2066 | 0.0861 | 0.2329 |
F2C | 0.5606 | 0.2434 | 0.1071 | 0.1742 | 0.5541 | 0.2343 | 0.2279 | 0.3171 | 0.3802 | 0.4189 | 0.4121 |
M2C | 0.0000 | 0.1352 | 0.0000 | 0.2374 | 0.9343 | 1.3357 | 0.6724 | 0.5965 | 0.4327 | 0.0947 | 0.0000 |
F2T | 0.0000 | 0.0000 | 0.0000 | 0.0401 | 0.0670 | 0.0665 | 0.0954 | 0.1362 | 0.3362 | 0.4998 | 0.5466 |
M2T | 0.0000 | 0.0993 | 0.1208 | 0.1845 | 0.2164 | 0.5197 | 0.8449 | 0.4442 | 0.4900 | 0.5022 | 0.6273 |
F3C | 0.1474 | 0.2322 | 0.1226 | 0.1030 | 0.0955 | 0.2076 | 0.0555 | 0.5797 | 0.1943 | 0.6147 | 0.2818 |
M3C | 0.1463 | 0.1899 | 0.0000 | 0.1818 | 0.4838 | 0.2559 | 0.1433 | 0.7308 | 0.1638 | 0.7107 | 0.0000 |
F3T | 0.1958 | 0.0000 | 0.0755 | 0.0000 | 0.0756 | 0.1333 | 0.5798 | 0.6492 | 0.6112 | 0.3355 | 0.1404 |
M3T | 0.1958 | 0.0000 | 0.0000 | 0.0000 | 0.3495 | 0.7029 | 0.4833 | 0.5069 | 0.4102 | 0.2836 | 0.5905 |
F4C | 0.0654 | 0.1553 | 0.0000 | 0.1910 | 0.4448 | 0.2708 | 0.4113 | 0.2833 | 0.2720 | 0.0000 | 0.0000 |
M4C | 0.0000 | 0.0000 | 0.0000 | 0.2127 | 0.1643 | 0.0785 | 0.1268 | 0.0577 | 0.0000 | 0.0000 | 0.1226 |
F4T | 0.0669 | 0.0000 | 0.0000 | 0.2639 | 0.6228 | 0.2368 | 0.8131 | 0.4221 | 0.4903 | 0.9351 | 0.8263 |
M4T | 0.2052 | 0.1152 | 0.0463 | 0.1896 | 0.2435 | 0.1644 | 0.3506 | 0.4251 | 0.2803 | 0.4064 | 0.6481 |
contR2Rmean = cbind(rowMeans(contR2R[,1:4]),rowMeans(contR2R[,5:11]))
colnames(contR2Rmean) = c('pre-treatment','post-treatment')
print(kable_styling(kable(contR2Rmean,digits=4,
table.attr = 'class="striped", format = "html"',
caption='Mean Proportional contribution of in situ reproduction to recruitment')))
pre-treatment | post-treatment | |
---|---|---|
F1T | 0.0408 | 0.7156 |
M1T | 0.0669 | 0.3923 |
F1C | 0.1239 | 0.3653 |
M1C | 0.0583 | 0.1538 |
F2C | 0.2713 | 0.3635 |
M2C | 0.0932 | 0.5809 |
F2T | 0.0100 | 0.2497 |
M2T | 0.1012 | 0.5207 |
F3C | 0.1513 | 0.2899 |
M3C | 0.1295 | 0.3555 |
F3T | 0.0678 | 0.3607 |
M3T | 0.0489 | 0.4753 |
F4C | 0.1029 | 0.2403 |
M4C | 0.0532 | 0.0786 |
F4T | 0.0827 | 0.6209 |
M4T | 0.1391 | 0.3597 |